在正三棱柱ABC-A1B1C1中,AB=4,點D在棱BB1上,若BD=3,則AD與平面AA1C1C所成角的正切值為(  )
A、
2
3
5
B、
2
39
13
C、
5
4
D、
4
3
考點:直線與平面所成的角
專題:空間角
分析:根據(jù)題意畫出圖形,過B作BF⊥AC,過B1作B1E⊥A1C1,連接EF,過D作DG⊥EF,連接AG,證明DG⊥面AA1C1C,∠DAG=α,解直角三角形ADG即可.
解答: 解:如圖所示,在正三棱柱ABC-A1B1C1中,AB=4,點D在棱BB1上,若BD=3,
過B作BF⊥AC,過B1作B1E⊥A1C1,連接EF,過D作DG⊥EF,連接AG,
在正三棱柱中,有B1E⊥面AA1C1C,BF⊥面AA1C1C,
故DG⊥面AA1C1C,
∴∠DAG=α,可求得DG=BF=2
3

AG=
AF2+FG2
=
4+9
=
13
,
故tanα=
DG
AG
=
2
3
13
=
2
39
13

故選:B.
點評:考查直線和平面所成的角,關(guān)鍵是找到斜線在平面內(nèi)的射影,把空間角轉(zhuǎn)化為平面角求解,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程
1
x
-
x
+3=0的解有
 
個(填數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用N代表第i個學(xué)生,用G代表成績,輸入學(xué)生號和成績,打印出每個班級及格學(xué)生的學(xué)號和成績,畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,A1B1和平面AC的位置關(guān)系是
 
,與平面A1C1的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系xOy中,設(shè)P是曲線C:xy=1(x>0)上任意一點,l是曲線C在點P處的切線,且l交坐標軸于A,B兩點,則下列結(jié)論正確的是( 。
A、△OAB的面積為定值2
B、△OAB的面積有最小值為3
C、△OAB的面積有最大值為4
D、△OAB的面積的取值范圍是[3,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

電視中某一娛樂性節(jié)目有一種猜價格的游戲,在限定時間內(nèi)(如15秒)猜出某一種商品的售價,就把該商品獎給選手,每次選手給出報價,主持人告訴說高了低了,以猜對或到時為止游戲結(jié)束.如猜一種品牌的電風扇,過程如下:游戲參與者開始報價500元,主持人說高了,300元,高了,260元,低了,280元,低了,290元,高了,285元,低了,288元,你猜對了!恭喜!請問游戲參與者用的數(shù)學(xué)知識是
 
(只寫出一個正確答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果s=( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,3)內(nèi),記點(a,b)對應(yīng)的區(qū)域為S.
(1)求區(qū)域S的面積;
(2)設(shè)z=2a-b,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log3x,x∈[1,3],則凼數(shù)y=[f(x)]2+2f(x)的值域為
 

查看答案和解析>>

同步練習(xí)冊答案