(Ⅰ)求側(cè)面ABB1A1與底面ABCD所成二面角的正切值;
(Ⅱ)在估測(cè)該多面體的體積時(shí),經(jīng)常運(yùn)用近似公式V估=S中截面·h來(lái)計(jì)算.已知它的體積公式是V=(S上底面+4S中截面+S下底面),試判斷V估與V的大小關(guān)系,并加以證明.
(注:與兩個(gè)底面平行,且到兩個(gè)底面距離相等的截面稱(chēng)為該多面體的中截面)
(Ⅰ)解:過(guò)B1C1作底面ABCD的垂直平面,交底面于PQ,過(guò)B1作B1G⊥PQ,垂足為G.如圖
∵平面ABCD∥平面A1B1C1D1, ∠A1B1C1=90°, ∴AB⊥PQ,AB⊥B1P. ∴∠B1PG為所求二面角的平面角. 過(guò)C1作C1H⊥PQ,垂足為H.由于相對(duì)側(cè)面與底面所成二面角大小相等,故四邊形B1PQC1為等腰梯形. ∴PG= 又B1G=h, ∴tanB1PG= (Ⅱ)V估<V. 證明:∵a>c,b>d, ∴V-V估= = = ∴V估<V. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
∥ |
. |
| ||
2 |
∥ |
. |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
| ||
. |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
∥ |
. |
1 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com