分析 (1)取PC的中點H,連接過DH,F(xiàn)H,證明FHDE是平行四邊形,然后利用直線與平面平行的判定定理證明即可.
(2)以O為坐標原點,OB所在直線為y軸,OP所在直線為z軸,BC的中垂線為x軸,求出相關點的坐標,設平面POD法向量,設平面PBE法向量,利用向量的數(shù)量積求解即可.
解答 (1)證明:在平面PCD中,取PC的中點H,連接過DH,F(xiàn)H,F(xiàn)為PB中點,可知:FH$\stackrel{∥}{=}$$\frac{1}{2}$BC,底面BCDE為等腰梯形,BC=4,DE=CD=BE=2,CB∥DE可知:DE$\stackrel{∥}{=}$$\frac{1}{2}$BC,所以:FH $\stackrel{∥}{=}$DE,四邊形FHDE是平行四邊形,所以,EF∥DH,DH?平面PCD,EF?平面PCD,∴EF∥平面PCD.
(2)底面BCDE為等腰梯形,CB∥DE,PO⊥底面BCDE,以O為坐標原點,OB所在直線為y軸,OP所在直線為z軸,BC的中垂線為x軸,如圖:
則O(0,0,0),P(0,0,$\sqrt{3}$),B(0,2,0),E($\sqrt{3}$,1,0),D($\sqrt{3}$,-1,0),
設平面POD法向量$\overrightarrow{n}$=(a,b,c).可得$\left\{\begin{array}{l}{\overrightarrow{OP}•\overrightarrow{n}=0}\\{\overrightarrow{OD}•\overrightarrow{n}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{c=0}\\{\sqrt{3}a-b=0}\end{array}\right.$,不妨令a=$\sqrt{3}$,
可得$\overrightarrow{n}$=($\sqrt{3},3,0)$,
設平面PBE法向量$\overrightarrow{m}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{PB}•\overrightarrow{m}=0}\\{\overrightarrow{BE}•\overrightarrow{m}=0}\end{array}\right.$,可得:$\left\{\begin{array}{l}{-2y+\sqrt{3}z=0}\\{\sqrt{3}x-y=0}\end{array}\right.$,不妨令x=$\sqrt{3}$,
可得$\overrightarrow{m}$=($\sqrt{3},3,2\sqrt{3})$,
平面POD與平面PBE所成銳二面角的余弦值cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$|=$\frac{{\sqrt{2}}}{2}$,夾角450.
點評 本題考查直線與平面平行的判定定理的應用,二面角的平面角的求法,考查空間想象能力以及計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{6}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{5}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com