【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為G()(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本 = 固定成本 + 生產(chǎn)成本);銷售收入R()(萬元)滿足:,假定該產(chǎn)品產(chǎn)銷平衡,那么根據(jù)上述統(tǒng)計規(guī)律:

(Ⅰ)要使工廠有贏利,產(chǎn)量應(yīng)控制在什么范圍?

(Ⅱ)工廠生產(chǎn)多少臺產(chǎn)品時,可使贏利最多?

【答案】 ()產(chǎn)品應(yīng)控制在大于100臺,小于820臺的范圍內(nèi)。

()當(dāng)工廠生產(chǎn)400臺產(chǎn)品時,贏利最多

【解析】

(Ⅰ)當(dāng),解不等式;當(dāng)時,解不等式,兩種情況求并集即可得結(jié)果;(Ⅱ) ,,故當(dāng)有最大值,而當(dāng),,由此可知當(dāng)工廠生產(chǎn)400臺產(chǎn)品時贏利最多.

依題意,.設(shè)利潤函數(shù)為,則

() 要使工廠有贏利,即解不等式,當(dāng)時,

解不等式。

.

,

當(dāng)x>5時,解不等式,

, ∴

綜上所述,要使工廠贏利,應(yīng)滿足

即產(chǎn)品應(yīng)控制在大于100臺,小于820臺的范圍內(nèi)。

() 時,故當(dāng)時,有最大值3.6.

而當(dāng)時,

所以,當(dāng)工廠生產(chǎn)400臺產(chǎn)品時,贏利最多

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求過點P(2,3),且在兩坐標(biāo)軸上的截距相等的直線方程.

(2)已知直線l平行于直線4x+3y-7=0,直線l與兩坐標(biāo)軸圍成的三角形的周長是15,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)ax2bxc,且f(1)=-,3a2c2b,求證:

(1)a0,且-3<-;

(2)函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點;

(3)設(shè)x1x2是函數(shù)f(x)的兩個零點,則≤|x1x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)AB兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖①;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖②.(注:利潤和投資單位:萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;

(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn),怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解高二學(xué)生對“地方歷史”校本課程的喜歡是否與在本地成長有關(guān),在全校高二學(xué)生中隨機抽取了20名,得到一組不完全的統(tǒng)計數(shù)據(jù)如下表:

(1)補齊上表數(shù)據(jù),并分別從被抽取的喜歡“地方歷史”校本課程與不喜歡“地方歷史”校本課程的學(xué)生中各選1名做進一步訪談,求至少有1名學(xué)生屬于在本地成長的概率;

(2)試回答:能否在犯錯誤的概率不超過0.10的前提下認(rèn)為“是否喜歡地方歷史校本課程與在本地成長有關(guān)”.

附:

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]

(1)當(dāng)a=1時,求函數(shù)f(x)的值域;

(2)若f(x)≤-alnx+4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.
(Ⅰ)求證AM∥平面BDE;
(Ⅱ)求二面角A﹣DF﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓x2+y2=12與拋物線x2=4y相交于A,B兩點,F(xiàn)為拋物線的焦點,若過點F且斜率為1的直線l與拋物線和圓交于四個不同的點,從左至右依次為P1 , P2 , P3 , P4 , 則|P1P2|+|P3P4|的值 , 若直線m與拋物線相交于M,N兩點,且與圓相切,切點D在劣弧 上,則|MF|+|NF|的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案