【題目】已知函數(shù).
(1)設(shè),求的最大值及相應(yīng)的值;
(2)對(duì)任意正數(shù)恒有,求的取值范圍.
【答案】(1)當(dāng)時(shí),取得最大值;(2)
【解析】
(1)先化簡(jiǎn)函數(shù)g(x)=lnx﹣f′(x)f(x)=lnx﹣(2x﹣1)(x2﹣x),從而求定義域;再求導(dǎo)g′(x);從而確定函數(shù)的最大值及相應(yīng)的值;
(2)f(x)+f()≥(x)lnm可化為x2﹣x(x)lnm;從而化為lnm;化簡(jiǎn)得1=(x)1;從而利用換元法求函數(shù)的最值,從而化恒成立問(wèn)題為最值問(wèn)題.
(1)∵,∴,
∴
則
∵的定義域?yàn)?/span>,∴
①當(dāng)時(shí),;②當(dāng)時(shí),;③當(dāng)時(shí),
因此在上是增函數(shù),在上是減函數(shù),
故當(dāng)時(shí),取得最大值.
(2)由(1)可知,
不等式可化為①
因?yàn)?/span>,所以(當(dāng)且僅當(dāng)取等號(hào))
設(shè),則把①式可化為,即(對(duì)恒成立)
令,此函數(shù)在上是增函數(shù),
所以的最小值為
于是,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:設(shè)一正方形紙片ABCD邊長(zhǎng)為2分米,切去陰影部分所示的四個(gè)全等的等腰三角形,剩余為一個(gè)正方形和四個(gè)全等的等腰三角形,沿虛線(xiàn)折起,恰好能做成一個(gè)正四棱錐(粘接損耗不計(jì)),圖中,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長(zhǎng)都相等,求這個(gè)正四棱錐的體積V;
(Ⅱ)設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,平面,點(diǎn)是的中點(diǎn),,,.
(1)求證:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)文化的優(yōu)秀遺產(chǎn),數(shù)學(xué)家劉徽在注解《九章算術(shù)》時(shí),發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊行的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限逼近圓的面積,為此他創(chuàng)立了割圓術(shù),利用割圓術(shù),劉徽得到了圓周率精確到小數(shù)點(diǎn)后四位3.1416,后人稱(chēng)3.14為徽率,如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,若結(jié)束程序時(shí),則輸出的為( )(,,)
A. 6 B. 12 C. 24 D. 48
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l:與拋物線(xiàn)C:相切.
(1)求拋物線(xiàn)方程;
(2)斜率不為0的直線(xiàn)經(jīng)過(guò)拋物線(xiàn)C的焦點(diǎn)F,交拋物線(xiàn)于兩點(diǎn)A,B,拋物線(xiàn)C上是否存在兩點(diǎn)D,E關(guān)于直線(xiàn)對(duì)稱(chēng).若存在求出斜率k的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)由0,1,2,…,9這十個(gè)數(shù)字組成的無(wú)重復(fù)數(shù)字的四位數(shù)中,十位數(shù)字與千位數(shù)字之差的絕對(duì)值等于7的四位數(shù)的個(gè)數(shù)共有幾種?
(2)我校高三學(xué)習(xí)雷鋒志愿小組共有16人,其中一班、二班、三班、四班各4人,現(xiàn)在從中任選3人,要求這三人不能是同一個(gè)班級(jí)的學(xué)生,且在三班至多選1人,求不同的選取法的種數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù),).
(1)求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(2)若對(duì)于任意,存在,使得,求的取值范圍;
(3)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年是中國(guó)改革開(kāi)放的第40周年,為了充分認(rèn)識(shí)新形勢(shì)下改革開(kāi)放的時(shí)代性,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.
(1)現(xiàn)從年齡在內(nèi)的人員中按分層抽樣的方法抽取8人,再?gòu)倪@8人中隨機(jī)抽取3人進(jìn)行座談,用表示年齡在內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;
(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從學(xué)生文藝部6名成員(4男2女)中,挑選2人參加學(xué)校舉辦的文藝匯演活動(dòng).
(1)求男生甲被選中的概率;
(2)在已知男生甲被選中的條件下,女生乙被選中的概率;
(3)在要求被選中的兩人中必須一男一女的條件下,求女生乙被選中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com