已知曲線C1(t為參數(shù)),C2(θ為參數(shù)).
(Ⅰ)將C1,C2的方程化為普通方程;
(Ⅱ)若C1上的點(diǎn)P對應(yīng)的參數(shù)為,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C3:x-2y-7=0距離的最小值.
【答案】分析:(Ⅰ)由三角函數(shù)cos2t+sin2t=1,化簡可得所求的普通方程;(Ⅱ)把代入可得點(diǎn)P,Q的坐標(biāo),由中點(diǎn)公式可得M坐標(biāo),代入點(diǎn)到直線的距離公式,由三角函數(shù)的最值求解方法可得.
解答:解:(Ⅰ)由已知可得cos2t+sin2t=(x+4)2+(y-3)2=1,
cos2θ+sin2θ==1,
故所求的普通方程為:
(Ⅱ)當(dāng)時,P(-4,4),Q(8cosθ,3sinθ),
,C3為直線x-2y-7=0,
故M到C3的距離=[13-5sin(θ-γ)],其中tanγ=
從而當(dāng)時,sin(θ-γ)取最大值1,
此時,d取得最小值
點(diǎn)評:本題考查橢圓的參數(shù)方程,以及點(diǎn)到直線的距離公式,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:專項(xiàng)題 題型:解答題

已知曲線C1(t為參數(shù)),C2(θ為參數(shù))。
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C3(t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省梅州市五華縣高三(上)第一次質(zhì)檢數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

在直角坐標(biāo)系xoy 中,已知曲線C1(t為參數(shù))與曲線C2(θ為參數(shù),a>0 ) 有一個公共點(diǎn)在X軸上,則a等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省梅州市五華縣高三(上)第一次質(zhì)檢數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在直角坐標(biāo)系xoy 中,已知曲線C1(t為參數(shù))與曲線C2(θ為參數(shù),a>0 ) 有一個公共點(diǎn)在X軸上,則a等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省揚(yáng)州中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(解析版) 題型:解答題

已知曲線C1(t為參數(shù)),C2(θ為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C1(t為參數(shù))距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案