已知a,b為正數(shù),a+b=1,求
ab+1
ab
的最小值.
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:根據(jù)基本不等式,由a+b=1,得出ab≤
1
4
,化簡(jiǎn)
ab+1
ab
,求出它的最小值.
解答: 解:∵a,b為正數(shù),a+b=1,
∴1=a+b≥2
ab
,
即ab≤
1
4
,當(dāng)且僅當(dāng)a=b=
1
2
時(shí),”=“成立;
ab+1
ab
=1+
1
ab
≥1+
1
1
4
=5,
ab+1
ab
的最小值是5.
點(diǎn)評(píng):本題考查了基本不等式的應(yīng)用問題,解題時(shí)應(yīng)靈活應(yīng)用基本不等式的性質(zhì)進(jìn)行解答,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=0且
1
1-an+1
-
1
1-an
=1.
(1)求{an}的通項(xiàng)公式;
(2)令bn=
1-
an+1
n
(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Sn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在曲線C1:
x=1+cosθ
y=-3+sinθ
(θ為參數(shù))上運(yùn)動(dòng),以坐標(biāo)原點(diǎn)為極點(diǎn),x的正半軸為極軸建立極坐標(biāo)系,直線L的極坐標(biāo)方程為ρcos(θ+
π
4
)=
2
,點(diǎn)Q在L上運(yùn)動(dòng),則|PQ|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,求圓ρ=2cosθ的圓心到直線2ρsin(θ+
π
3
)=1
的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x)=f(x+2),且x∈(-1,0)時(shí),f(x)=2x-
1
2
,則f(log218)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,從a1,a2,a3,a4,a5,a6,a7中取走任意四項(xiàng),則剩下三項(xiàng)構(gòu)成等差數(shù)列的概率為( 。
A、
6
35
B、
9
35
C、1或
9
35
D、1或
6
35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2cosx,cos2x),
b
=(sinx,-
3
),f(x)=
a
b

(1)求f(x)的振幅、周期,并畫出它在一個(gè)周期內(nèi)的圖象;
(2)說明它可以由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年11月12日,科幻巨片《星際穿越》上映,上映至今,全球累計(jì)票房高達(dá)6億美金.為了解綿陽觀眾的滿意度,某影院隨機(jī)調(diào)查了本市觀看此影片的觀眾,并用“10分制”對(duì)滿意度進(jìn)行評(píng)分,分?jǐn)?shù)越高滿意度越高,若分?jǐn)?shù)不低于9分,則稱該觀眾為“滿意觀眾”.現(xiàn)從調(diào)查人群中隨機(jī)抽取12名.如圖所示的莖葉圖記錄了他們的滿意度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉).
(1)求從這12人中隨機(jī)選取1人,該人不是“滿意觀眾”的概率;
(2)從本次所記錄的滿意度評(píng)分大于9.1的“滿意觀眾”中隨機(jī)抽取2人,求這2人得分不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin(π-2ωx)-sin(
π
2
-2ωx)(ω>0)的圖象與x軸相鄰兩交點(diǎn)的距離為π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(A)=2,求
b-c
a
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案