【題目】如圖,設(shè)D是圖中邊長分別為1和2的矩形區(qū)域,E是D內(nèi)位于函數(shù)y= (x>0)圖象下方的區(qū)域(陰影部分),從D內(nèi)隨機(jī)取一個點(diǎn)M,則點(diǎn)M取自E內(nèi)的概率為( )
A.
B.
C.
D.
【答案】C
【解析】解:本題是幾何概型問題, 區(qū)域E的面積為:S=2× =1+ =1﹣ln =1+ln2
∴“該點(diǎn)在E中的概率”事件對應(yīng)的區(qū)域面積為 1+ln2,
矩形的面積為2
由集合概率的求解可得P=
故選C
【考點(diǎn)精析】掌握定積分的概念和幾何概型是解答本題的根本,需要知道定積分的值是一個常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限;幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】P是雙曲線 =1(a>0,b>0)上的點(diǎn),F(xiàn)1、F2是其焦點(diǎn),且 =0,若△F1PF2的面積是9,a+b=7,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知底面為邊長為2的正方形,側(cè)棱長為1的直四棱柱ABCD﹣A1B1C1D1中,P是面A1B1C1D1上的動點(diǎn).給出以下四個結(jié)論中,正確的個數(shù)是( ) ①與點(diǎn)D距離為 的點(diǎn)P形成一條曲線,則該曲線的長度是 ;
②若DP∥面ACB1 , 則DP與面ACC1A1所成角的正切值取值范圍是 ;
③若 ,則DP在該四棱柱六個面上的正投影長度之和的最大值為 .
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣6x+5<0},B={x| <2x﹣4<16},C={x|﹣a<x≤a+3}
(1)求A∪B和(RA)∩B
(2)若A∪C=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的內(nèi)角對邊分別為a,b,c,滿足(a+b+c)(a﹣b+c)=ac. (Ⅰ)求B.
(Ⅱ)若sinAsinC= ,求C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在 上的函數(shù) 滿足 ,當(dāng) 時, ,其中 ,若方程 恰有3個不同的實(shí)數(shù)根,則 的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 與y軸交于B1、B2兩點(diǎn),F(xiàn)1為橢圓C的左焦點(diǎn),且△F1B1B2是腰長為 的等腰直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于P、Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對稱點(diǎn)為P1(P1與Q不重合),則直線P1Q與x軸是否交于一個定點(diǎn)?若是,請寫出該定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|,a∈R. (Ⅰ)當(dāng)a=2時,解不等式:f(x)≥6﹣|2x﹣5|;
(Ⅱ)若關(guān)于x的不等式f(x)≤4的解集為[﹣1,7],且兩正數(shù)s和t滿足2s+t=a,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com