11.已知數(shù)列{an},{bn}滿足a1=1且an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個零點(diǎn),則b9等于(  )
A.64B.48C.32D.24

分析 由根與系數(shù)關(guān)系得到an•an+1=2n,以n+1替換n后再得一式,兩式相除,可得數(shù)列{an}中奇數(shù)項(xiàng)成等比數(shù)列,偶數(shù)項(xiàng)也成等比數(shù)列,求出a9,a10后,可求b9

解答 解:由已知得,an•an+1=2n,
∴an+1•an+2=2n+1,
兩式相除得$\frac{{a}_{n+2}}{{a}_{n}}$=2.
∴a1,a3,a5,…成等比數(shù)列,a2,a4,a6,…成等比數(shù)列.
而a1=1,a2=2,a9=1×24=16,
∴a10=2×24=32,
又an+an+1=bn,所以b9=a9+a10=48.
故選:B.

點(diǎn)評 本題考查了韋達(dá)定理的應(yīng)用,等比數(shù)列的判定及通項(xiàng)公式求解,考查轉(zhuǎn)化、構(gòu)造、計算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=xex,則曲線y=f(x)在點(diǎn)(0,0)處的切線方程為y=x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=|x+2|-|2x-1|,M為不等式f(x)>0的解集.
(1)求M;
(2)求證:當(dāng)x,y∈M時,|x+y+xy|<15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列四個命題中,正確的個數(shù)是( 。
①命題“存在x∈R,x2-x>0”的否定是“對于任意的x∈R,x2-x<0”;
②若函數(shù)f(x)在(2016,2017)上有零點(diǎn),則f(2016)•f(2017)<0;
③在公差為d的等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差d為-$\frac{1}{2}$;
④函數(shù)y=sin2x+cos2x在[0,$\frac{π}{2}$]上的單調(diào)遞增區(qū)間為[0,$\frac{π}{8}$].
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在(0,$\frac{π}{2}}$)上的函數(shù)f(x),f'(x)為其導(dǎo)數(shù),且$\frac{f(x)}{{{sin}x}}$<$\frac{f'(x)}{cosx}$恒成立,則( 。
A.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)C.f(1)<2f($\frac{π}{6}$)sin1D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=3x,f(a+2)=27,函數(shù)g(x)=λ•2ax-4x的定義域?yàn)閇0,2].
(1)求a的值;
(2)若λ=2,試判斷函數(shù)g(x)在[0,2]上的單調(diào)性,并加以證明;
(3)若函數(shù)g(x)的最大值是$\frac{1}{3}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a=$\root{3}{{{{(3-π)}^3}}}$,b=$\root{4}{{{{(2-π)}^4}}}$,則a+b的值為( 。
A.1B.5C.-1D.2π-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若f(x)滿足關(guān)系式f(x)+2f($\frac{1}{x}$)=3x,則f(-2)的值為( 。
A.1B.-1C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從集合A={d,V,W}到集合B={0,1}的所有映射的個數(shù)為( 。
A.0B.2C.6D.8

查看答案和解析>>

同步練習(xí)冊答案