19.在正四面體ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),則下列命題正確的序號(hào)是①③④
①異面直線AB與CD所成角為90°;
②直線AB與平面BCD所成角為60°;
③直線EF∥平面ACD     
④平面AFD⊥平面BCD.

分析 在①中,由AB⊥平面CDE,知異面直線AB與CD所成角為90°;在②中,直線AB與平面BCD所成角為arccos$\frac{\sqrt{3}}{3}$;在③中由EF∥AC,知直線EF∥平面ACD;在④中,由BC⊥平面ADF,知平面AFD⊥平面BCD.

解答 解:正四面體ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),
在①中,∵正四面體ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),
∴CE⊥AB,DE⊥AB,
又CE∩DE=E,∴AB⊥平面CDE,
∵CD?平面CDE,
∴異面直線AB與CD所成角為90°,故①正確;
在②中,過(guò)A作AO⊥平面BCD,交DF=O,連結(jié)BO,
則∠ABO是直線AB與平面BCD所成角,
設(shè)正四面體ABCD的棱長(zhǎng)為2,
則DF=$\sqrt{3}$,BO=$\frac{2DF}{3}=\frac{2\sqrt{3}}{3}$,
cos$∠ABO=\frac{BO}{AB}$=$\frac{\frac{2\sqrt{3}}{3}}{2}$=$\frac{\sqrt{3}}{3}$.
∴直線AB與平面BCD所成角為arccos$\frac{\sqrt{3}}{3}$,故②錯(cuò)誤;
在③中,∵點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),
∴EF∥AC,
∵EF?平面ACD,AC?平面ACD,
∴直線EF∥平面ACD,故③正確;
在④中,由AF⊥BC,DF⊥BC,
又AF∩DF=F,∴BC⊥平面ADF,
∵BC?平面BCD,∴平面AFD⊥平面BCD,故④正確.
故答案為:①③④.

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)$f(x)=lo{g}_{a}x+lo{g}_{\frac{1}{a}}$8(a>0,且a≠1),在集合{$\frac{1}{4}$,$\frac{1}{3}$,$\frac{1}{2}$,3,4,5,6,7}中任取一個(gè)數(shù)為a,則f(3a+1)>f(2a)>0的概率為( 。
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某校數(shù)學(xué)興趣小組在研究本地的城市道路與汽車(chē)保有量之間的關(guān)系(即某地區(qū)道路的總里程數(shù)和該地區(qū)擁有的汽車(chē)數(shù)量之間的關(guān)系)時(shí),得到了近8年的城市道路總里程x(單位:百公里)和汽車(chē)保有量y(單位:百輛)的數(shù)據(jù)如下表:
數(shù)據(jù)編號(hào)20082009201020112012201320142015
道路里程數(shù)x120130140150160170180190
汽車(chē)保有量y144154160168176180186190
(Ⅰ)若某年的兩個(gè)值都不小于170時(shí),我們將該年稱(chēng)為“出行便捷年”.現(xiàn)從這8年中任取5年,求恰有2年為“出行便捷年”的概率(請(qǐng)用分?jǐn)?shù)作答).
(Ⅱ)根據(jù)上表數(shù)據(jù),用變量y和x的相關(guān)系數(shù)說(shuō)明y與x之間線性相關(guān)關(guān)系的強(qiáng)弱.如果具有較強(qiáng)的線性相關(guān)關(guān)系,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)關(guān)系,請(qǐng)說(shuō)明理由.
參考公式:相關(guān)系數(shù)$r=\frac{{\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}\sum_{i=1}^8{{{({y_i}-\overline y)}^2}}}}}$;回歸直線的方程是:$\hat y=\hat bx+a$,
其中$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-\hat b\overline x$,${\hat y_i}$是與xi對(duì)應(yīng)的回歸估計(jì)值.
參考數(shù)據(jù):$\overline x=155$,$\overline y=169.75$,$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}=4200$,$\sum_{i=1}^8{{{({y_i}-\overline y)}^2}}=1827.5$,$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}=2750$,$\sqrt{4200}≈64.80$,$\sqrt{1827.5}≈42.75$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$上一點(diǎn)P到左焦點(diǎn)的距離為5,則點(diǎn)P到右焦點(diǎn)的距離為( 。
A.13B.15C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知點(diǎn)P(x,y)在橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上運(yùn)動(dòng),設(shè)$d=\sqrt{{x^2}+{y^2}+4y+4}-\frac{x}{2}$,則d的最小值為( 。
A.$\sqrt{5}-2$B.$2\sqrt{2}-1$C.$\sqrt{5}-1$D.$\sqrt{6}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.執(zhí)行下面的程序框圖,若輸入的N是5,那么輸出的S=-46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在數(shù)列{an}中,a1=3,a17=67,通項(xiàng)公式是關(guān)于n的一次函數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a2013;
(3)2015是否為數(shù)列{an}中的項(xiàng)?若是,為第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合$A=\{x|\frac{x+3}{x-3}≤0\}$,B={x|x-1≥0},則A∩B為( 。
A.[1,3]B.[1,3)C.[-3,∞)D.(-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合A={-1,1},集合B={x|ax=1,a∈R},則使得B⊆A的a的所有取值構(gòu)成的集合是( 。
A.{0,1}B.{0,-1}C.{1,-1}D.{-1,0,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案