【題目】一個樣本M的數(shù)據(jù)是x1 , x2 , ,xn , 它的平均數(shù)是5,另一個樣本N的數(shù)據(jù)x12 , x22 , ,xn2它的平均數(shù)是34.那么下面的結果一定正確的是( )
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3
【答案】A
【解析】解:設樣本M的數(shù)據(jù)x12,x22,,xn2它的方差為S2,則
S2= [(x1﹣5)2+(x2﹣5)^2+(x3﹣5)2+(xn﹣5)2]
= [x12+x22+x32xn2﹣10(x1+x2+x3++xn)+25×n]
=34﹣10×5+25=9,
∴SM2=9.
故選:A.
【考點精析】認真審題,首先需要了解極差、方差與標準差(標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx﹣cos2x+ ,(x∈R).
(1)若對任意x∈[﹣ , ],都有f(x)≥a,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個點縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,然后再向左平移 個單位得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)﹣ 在區(qū)間[﹣2π,4π]內的所有零點之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一個周期的圖象時,列表并填入了部分數(shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)請求出上表中的x1 , x2 , x3 , 并直接寫出函數(shù)f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2對任意x∈[0,2π]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=( )
A.5
B.9
C.log345
D.10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosx,﹣1), =( sinx,cos2x),設函數(shù)f(x)= + .
(Ⅰ)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)當x∈(0, )時,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑,如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個表面積最大的長方體,第二次切削沿長方體的對角面刨開,得到兩個三棱柱,第三次切削將兩個三棱柱分別沿棱和表面的對角線刨開得到兩個鱉臑和兩個陽馬,則陽馬與鱉臑的體積之比為( )
A.3:1
B.2:1
C.1:1
D.1:2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD為直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,則PB與平面PCD所成角的正弦值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com