6.已知函數(shù)f(x)(x∈R)滿足f(-x)=-f(x+4),若函數(shù)y=$\frac{1}{2-x}$與y=f(x)圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則$\sum_{i=1}^m$(xi+yi)=( 。
A.0B.mC.2mD.4m

分析 由題意可得f(x)的圖象關(guān)于點(0,2)對稱,函數(shù)而函數(shù)y=$\frac{1}{2-x}$的圖象也關(guān)于點(0,2)對稱,分m為奇數(shù)和偶數(shù)兩種情況討論即可求出答案

解答 解:函數(shù)f(x)(x∈R)滿足f(-x)=-f(x+4),
∴f(x)的圖象關(guān)于點(0,2)對稱,
而函數(shù)y=$\frac{1}{2-x}$的圖象也關(guān)于點(0,2)對稱,
當(dāng)m為偶數(shù)時,
∴x1+xm =x2+xm-1 =x3+xm-2 =…=0,y1+ym=y2+ym-1=y3+ym-2 =…=4,
∴$\sum_{i=1}^m$(xi+yi)=$\underset{\underbrace{2+2+…+2}}{m個}$=2m,
當(dāng)m為奇數(shù)時,
∴x1+xm =x2+xm-1 =x3+xm-2 =…=${x}_{\frac{m+1}{2}}$,y1+ym=y2+ym-1=y3+ym-2 =…=2y${\;}_{\frac{m+1}{2}}$=4,
∴$\sum_{i=1}^m$(xi+yi)=$\underset{\underbrace{2+2+…+2}}{m個}$=2m,
綜上所述則$\sum_{i=1}^m$(xi+yi)=2m,
故選:C

點評 本題考查了函數(shù)圖象的識別和中心對稱的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線y=x+m與橢圓$\frac{x^2}{2}+{y^2}$=1相切,則m的值為( 。
A.±$\sqrt{3}$B.±$\sqrt{2}$C.±1D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.頂點在原點,焦點坐標(biāo)為(-3,0)的拋物線的標(biāo)準(zhǔn)方程y2=-12x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.?dāng)?shù)列1,5,10,16,23,31,x,50,…中的x等于40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某種產(chǎn)品的廣告支出x與銷售額y(單位:萬元)之間有如表對應(yīng)關(guān)系:
x24568
y3040605070
(Ⅰ) 假設(shè)y與x之間具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ) 求相關(guān)指數(shù)R2,并證明殘差變量對銷售額的影響占百分之幾?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.等比數(shù)列{an}中,q=2,a2+a5+…+a98=22,則數(shù)列{an}的前99項的和S99=( 。
A.100B.88C.77D.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的偶函數(shù)f(x)滿足f(x-3)=-f(x),對?x1,x2∈[0,3]且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則有(  )
A.f(49)<f(64)<f(81)B.f(49)<f(81)<f(64)C.f(64)<f(49)<f(81)D.f(64)<f(81)<f(49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)、g(x)、h(x)是定義域為R的三個函數(shù),對于命題:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數(shù),則f(x)、g(x)、h(x)中至少有一個增函數(shù);
②若T均是f(x)+g(x)、f(x)+h(x)、g(x)+h(x)的一個周期,則T也均是f(x)、g(x)、h(x)的一個周期,
③若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是奇函數(shù),則f(x)、g(x)、h(x)均是奇函數(shù),
下列上述命題成立的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)在($\frac{π}{2}$,π)上單調(diào)遞增,則ω的取值范圍是(  )
A.(0,$\frac{1}{3}$]B.[$\frac{1}{3}$,$\frac{2}{3}$]C.[$\frac{2}{3}$,$\frac{4}{3}$]D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

同步練習(xí)冊答案