如圖,某小區(qū)擬在空地上建一個(gè)占地面積為2400平方米的矩形休閑廣場(chǎng),按照設(shè)計(jì)要求,休閑廣場(chǎng)中間有兩個(gè)完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設(shè)計(jì)矩形休閑廣場(chǎng)的長(zhǎng)和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.
當(dāng)休閑廣場(chǎng)的長(zhǎng)為米,寬為米時(shí),綠化區(qū)域總面積最大值,最大面積為平方米.
解析試題分析:先將休閑廣場(chǎng)的長(zhǎng)度設(shè)為米,并將寬度也用進(jìn)行表示,并將綠化區(qū)域的面積表示成的函數(shù)表達(dá)式,利用基本不等式來求出綠化區(qū)域面積的最大值,但是要注意基本不等式適用的三個(gè)條件.
試題解析:設(shè)休閑廣場(chǎng)的長(zhǎng)為米,則寬為米,綠化區(qū)域的總面積為平方米,
6分
, 8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/5/15lwo2.png" style="vertical-align:middle;" />,所以,
當(dāng)且僅當(dāng),即時(shí)取等號(hào) 12分
此時(shí)取得最大值,最大值為.
答:當(dāng)休閑廣場(chǎng)的長(zhǎng)為米,寬為米時(shí),綠化區(qū)域總面積最大值,最大面積為平方米.
14分
考點(diǎn):矩形的面積、基本不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
對(duì)于具有相同定義域的函數(shù)和,若存在,使得,則和在上是“親密函數(shù)”.給出定義域均為的四組函數(shù)如下:
① ②
③ ④
其中,函數(shù)和在上是“親密函數(shù)”的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
記定義在R上的函數(shù)的導(dǎo)函數(shù)為.如果存在,使得成立,則稱為函數(shù)在區(qū)間上的“中值點(diǎn)”.那么函數(shù)在區(qū)間[-2,2]上“中值點(diǎn)”的為____ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
定義:區(qū)間長(zhǎng)度為.已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/c/nrew5.png" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/14/c/npaz11.png" style="vertical-align:middle;" />,則區(qū)間長(zhǎng)度的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com