11.點(diǎn)P在橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1上運(yùn)動(dòng),點(diǎn)A、B分別在x2+(y-4)2=16和x2+(y+4)2=4上運(yùn)動(dòng),則PA+PB的最大值16.

分析 由題意得:橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1的兩個(gè)焦點(diǎn)(0,±4)分別是圓x2+(y-4)2=16和x2+(y+4)2=4的圓心,故P為橢圓的下頂點(diǎn),A,B分別為相應(yīng)圓上縱坐標(biāo)最大的點(diǎn)時(shí),PA+PB取最大值.

解答 解:由題意得:橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1的兩個(gè)焦點(diǎn)(0,±4)分別是圓x2+(y-4)2=16和x2+(y+4)2=4的圓心,
P到兩個(gè)焦點(diǎn)的距離和為定值2×5=10,
兩圓的半徑分別為4和2,
故P為橢圓的下頂點(diǎn),A,B分別為相應(yīng)圓上縱坐標(biāo)最大的點(diǎn)時(shí),
PA+PB的最大值為:2×5+2+4=16,
故答案為:16.

點(diǎn)評 本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意公式的合理運(yùn)用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=Asin(?x+φ)(A>0,?>0,0<φ<$\frac{π}{2}$)的圖象如圖所示,則(  )
A.f(x)=2sin3xB.$f(x)=2sin(x+\frac{π}{3})$C.$f(x)=2sin(3x+\frac{π}{6})$D.$f(x)=2sin(2x+\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)y=$\left\{{\begin{array}{l}{{x^2}+1}\\{2x}\end{array}}\right.\begin{array}{l}(x≤0)\\(x>0)\end{array}$,若f(x)=5,則x的值是-2或$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)兩個(gè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,若向量2t$\overrightarrow{a}$+7$\overrightarrow$與向量$\overrightarrow{a}$+t$\overrightarrow$的夾角為鈍角,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x+$\frac{m}{x}$,且f(1)=2.
(Ⅰ)求m的值;
(Ⅱ)判斷f(x)的奇偶性;
(Ⅲ)用定義法證明f(x)在區(qū)間(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=ax2+2x+1在(-∞,0)上至少有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,0)B.(-∞,1]C.(-∞,0)∪(0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某組合體的正視圖與側(cè)視圖相同,如圖所示,其中AB=AC,四邊形BCDE為矩形,則該組合體的俯視圖可能為( 。
A.(1)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lg(l+x)-lg(2-x)的定義域?yàn)闂l件p,關(guān)于x的不等式x2+mx-2m2-3m-l<0(m>$-\frac{2}{3}$)的解集為條件q.
(1)若p是q的充分不必要條件時(shí),求實(shí)數(shù)m的取值范圍.
(2)若¬p是¬q的充分不必要條件時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=loga|x|在(0,+∞)上單調(diào)遞減,則f(-2)<f(a+1)(填“<”,“=”,“>”之一).

查看答案和解析>>

同步練習(xí)冊答案