已知函數(shù)f(x)=
(a-3)x+2,x≤1
-x2+(a2-4)x-8,x>1
是單調(diào)遞減函數(shù),求a的取值范圍.
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)=
(a-3)x+2,x≤1
-x2+(a2-4)x-8,x>1
是單調(diào)遞減函數(shù)可得
a-3<0
a2-4
2
≤1
(a-3)+2≥-1+a2-4-8
,從而求解.
解答: 解:∵函數(shù)f(x)=
(a-3)x+2,x≤1
-x2+(a2-4)x-8,x>1
是單調(diào)遞減函數(shù),
a-3<0
a2-4
2
≤1
(a-3)+2≥-1+a2-4-8

解得,-
6
≤a≤
6
點(diǎn)評(píng):本題考查了分段函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算:a*b=
a,(ab>0)
b,(ab≤0)
,則函數(shù)f(x)=x*
1
x-1
的值域?yàn)?div id="ssqegfi" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=m,則
sin(α+3π)+cos(π+α)
sin(-α)-cos(π+α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,AC=BC=
2
2
AB,四邊形ABED是矩形,AB=2,平面ABED⊥平面ABC,G、F分別是EC、BD的中點(diǎn),EC與平面ABC所成角的正弦值為
6
3

(Ⅰ)求證:GF∥底面ABC;
(Ⅱ)求BD與面EBC的所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(
π
3
-a)=
3
3
,求sin(
6
-a)+sin2
3
+a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex+ax+b(a,b∈R),g(x)=
x2
2

(Ⅰ)當(dāng)a=b=0時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程y=h(x);并證明f(x)≥h(x)(x≥0)恒成立;
(Ⅱ)當(dāng)b=-1時(shí),若f(x)≥g(x)對(duì)于任意的x∈[0,+∞)恒成立,求a的取值范圍;
(Ⅲ)求證:
n
i=1
(e 
1
k
+ln2-2g(
1
k
))>2n+2ln(n+1)(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是圓(x-5)2+(y-3)2=9上點(diǎn),則點(diǎn)P到直線3x+4y-2=0的最大距離是( 。
A、2B、5C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3-3x+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是(  )
A、(2,+∞)
B、(1,+∞)
C、(1,2)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足
x≥0
x-y≥0
2x-y-2≤0
,則z=3x-2y的最大值為( 。
A、2B、3C、4D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案