(2013•梅州一模)下列命題中假命題是(  )
分析:通過換元,因?yàn)椤?-3<0,判定出t2+t+1>0,進(jìn)一步得到ln2x+lnx+1>0,判定出A正確;通過舉反例,判定出B正確C不正確;根據(jù)冪函數(shù)的定義及單調(diào)性,判定出D正確
解答:解:對(duì)于A,令lnx=t則ln2x+lnx+1=t2+t+1,因?yàn)椤?-3<0,所以t2+t+1>0,所以ln2x+lnx+1>0,所以A正確;
對(duì)于B,當(dāng)α=
π
3
,β=-
π
3
時(shí),有cos(α+β)=cosα+cosβ,所以?α,β∈R,使cos(α+β)=cosα+cosβ,所以B正確;
對(duì)于C,例如a=-2,b=1滿足“a<b”推不出“a2<b2”,所以“a2<b2”不是“a<b”的必要不充分條件,所以C不正確;
對(duì)于D,使f(x)=(m-1)xm2-4m+3是冪函數(shù),且在(0,+∞)上遞減,需要
m-1=1
m2-4m+3<0
所以m=2,所以D正確
故選C
點(diǎn)評(píng):本題考查解決選擇題常用的一個(gè)方法:舉反例;考查換元的數(shù)學(xué)方法,屬于一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個(gè)不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是
[-
2
,
2
]
[-
2
,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)設(shè)等比數(shù)列{an}的公比q=2,前n項(xiàng)和為Sn,則
S4
a2
=
15
2
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)已知雙曲線
x2
a2
-
y2
b2
 =1(a>b>0)
的兩條漸近線的夾角為
π
3
,則雙曲線的離心率為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)某工廠在試驗(yàn)階段大量生產(chǎn)一種零件,這種零件有甲、乙兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響,按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品,為估計(jì)各項(xiàng)技術(shù)的達(dá)標(biāo)概率,現(xiàn)從中抽取1000個(gè)零件進(jìn)行檢驗(yàn),發(fā)現(xiàn)兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的有600個(gè),而甲項(xiàng)技術(shù)指標(biāo)不達(dá)標(biāo)的有250個(gè).
(1)求一個(gè)零件經(jīng)過檢測(cè)不為合格品的概率及乙項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率;
(2)任意抽取該零件3個(gè),求至少有一個(gè)合格品的概率;
(3)任意抽取該種零件4個(gè),設(shè)ξ表示其中合格品的個(gè)數(shù),求隨機(jī)變量ξ的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案