8.已知直線l1:mx+3y+3=0,l2:x+(m-2)y+1=0,則“m=3”是“l(fā)1∥l2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)直線的平行關(guān)系求出m的值,再根據(jù)充分必要條件的定義判斷即可.

解答 解:若“l(fā)1∥l2”,
則m(m-2)=3,解得:m=3或m=-1,
而m=3時,直線重合,
故m=-1,
故“m=3”是“l(fā)1∥l2”的既不充分也不必要條件,
故選:D.

點評 本題考查了充分必要條件,考查直線的平行關(guān)系,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=sin2xcos$\frac{3π}{5}-cos2xsin\frac{3π}{5}$.
(Ⅰ)求f(x)的最小正周期和對稱軸的方程;
(Ⅱ)求f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知點F2,P分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點與右支上的一點,O為坐標原點,若2$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{O{F_2}},|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,則該雙曲線的離心率為( 。
A.$2\sqrt{3}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=$\sqrt{2}$,點E在AD上,且AE=2ED.
(Ⅰ)已知點F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面積是梯形ABCD面積的$\frac{4}{3}$,求點E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在△ABC中,已知三內(nèi)角A,B,C成等差數(shù)列,且sin($\frac{π}{2}$+A)=$\frac{11}{14}$.
(Ⅰ)求tanA及角B的值;
(Ⅱ)設(shè)角A,B,C所對的邊分別為a,b,c,且a=5,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{3x-y-7≥0}\\{5x-4y≤0}\\{y≤10}\end{array}\right.$,則$\frac{y+x}{x}$的最大值為( 。
A.1B.$\frac{30}{17}$C.$\frac{47}{17}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|3x-1|-2|x|+2.
(1)解不等式:f(x)<10;
(2)若對任意的實數(shù)x,f(x)-|x|≤a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)$f(x)=sin(ωx+\frac{π}{6})(ω>0)$的最小正周期為4π,則( 。
A.函數(shù)f(x)的圖象關(guān)于原點對稱
B.函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{3}$對稱
C.函數(shù)f(x)圖象上的所有點向右平移$\frac{π}{3}$個單位長度后,所得的圖象關(guān)于原點對稱
D.函數(shù)f(x)在區(qū)間(0,π)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)數(shù)列{an+1}是一個各項均為正數(shù)的等比數(shù)列,已知a3=7,a7=127.
(1)求的a1值;
(2)求數(shù)列{an}的前n項和.

查看答案和解析>>

同步練習冊答案