【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點是曲線上一點,求點到直線的最小距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC為等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分別是邊AC和AB的中點,現(xiàn)將△ADE沿DE折起,使面ADE⊥面DEBC,H、F分別是邊AD和BE的中點,平面BCH與AE、AF分別交于I、G兩點
(Ⅰ)求證:IH∥BC;
(Ⅱ)求直線AE與平面角GIC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:關(guān)于x的不等式|x﹣2|+|x+2|>m的解集是R; q:關(guān)于x的不等式x2+mx+4>0的解集是R.則p成立是q成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.即不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側(cè)面BB1CC1 .
(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱CC1(不包含端點C,C1)上確定一點E的位置,使得EA⊥EB1(要求說明理由).
(3)在(2)的條件下,若AB= ,求二面角A﹣EB1﹣A1的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級學(xué)生中隨機抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.
(1)求圖中實數(shù)的值;
(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績在與兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)若在區(qū)間上為增函數(shù),求的取值范圍;
(Ⅱ)當(dāng)時,證明:;
(Ⅲ)當(dāng)時,試判斷方程是否有實數(shù)解,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市準(zhǔn)備實施天然氣價格階梯制,現(xiàn)提前調(diào)查市民對天然氣價格階梯制的態(tài)度,隨機抽查了50名市民,現(xiàn)將調(diào)查情況整理成了被調(diào)查者的頻率分布直方圖(如圖)和贊成者的頻數(shù)表如下:
(Ⅰ)若從年齡在,的被調(diào)查者中各隨機選取2人進(jìn)行調(diào)查,求所選取的4人中至少有2人對天然氣價格階梯制持贊成態(tài)度的概率;
(Ⅱ)若從年齡在,的被調(diào)查者中各隨機選取2人進(jìn)行調(diào)查,記選取的4人中對天然氣價格實施階梯制持不贊成態(tài)度的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 點(an , Sn)(n∈N*)都在函數(shù)f(x)= 的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an3n , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com