8、已知a,b,c均為大于0的實(shí)數(shù),設(shè)命題P:以a,b,c為長(zhǎng)度的線段可以構(gòu)成三角形的三邊,命題Q:a2+b2+c2<2(ab+bc+ca),則P是Q的(  )
分析:分別討論命題P:以a,b,c為長(zhǎng)度的線段可以構(gòu)成三角形的三邊?命題Q:a2+b2+c2<2(ab+bc+ca),及命題Q:a2+b2+c2<2(ab+bc+ca)?命題P:以a,b,c為長(zhǎng)度的線段可以構(gòu)成三角形的三邊的真假,進(jìn)而根據(jù)充要條件的定義,即可得到答案.
解答:解:若命題P:以a,b,c為長(zhǎng)度的線段可以構(gòu)成三角形的三邊,為真命題
則根據(jù)三角形任意兩邊之長(zhǎng)大于第三邊,則
2(ab+bc+ca)=ab+bc+ab+ca+bc+ca=b(a+c)+a(b+c)+c(b+a)>a2+b2+c2
即P是Q的充分條件
當(dāng)a=1,b=2,c=3時(shí),a2+b2+c2<2(ab+bc+ca)成立,但以a,b,c為長(zhǎng)度的線段可以構(gòu)不成三角形的三邊,
故P是Q的不必要條件
故選A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是充要條件,其中判斷命題P?命題Q,及命題Q?命題P的真假,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C均在橢圓M:
x2
a2
+y2=1(a>1)
上,直線AB、AC分別過(guò)橢圓的左右焦點(diǎn)F1、F2,當(dāng)
AC
F1F2
=0
時(shí),有9
AF1
AF2
=
AF1
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)是橢圓M上的任一點(diǎn),EF為圓N:x2+(y-2)2=1的任一條直徑,求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
(1)選修4一2:矩陣與變換
設(shè)矩陣M所對(duì)應(yīng)的變換是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)當(dāng)α=
π
3
時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過(guò)坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實(shí)數(shù),且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c均為實(shí)數(shù),a2+b2+c2=1,則ab+bc+ac的最大值為_(kāi)_________,最小值為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
(1)選修4一2:矩陣與變換
設(shè)矩陣M所對(duì)應(yīng)的變換是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)當(dāng)α=
π
3
時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過(guò)坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實(shí)數(shù),且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建師大附中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
(1)選修4一2:矩陣與變換
設(shè)矩陣M所對(duì)應(yīng)的變換是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線(t為參數(shù)),(θ為參數(shù)).
(Ⅰ)當(dāng)時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過(guò)坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實(shí)數(shù),且a+b+c=1.求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案