已知函數(shù)f(x)=ax(a>0,且a≠1)在區(qū)間(1,2)上的最大值與最小值的差為
a
2
,則a=
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:討論指數(shù)函數(shù)y=ax(a>0且a≠1)的單調(diào)性,從而確定函數(shù)的最值,從而求a.
解答: 解:由題意,若0<a<1,
則有a-a2=
a
2
,
解得,a=
1
2
;
若a>1,則有a2-a=
a
2
,
則a=
3
2
,
故答案為:
1
2
3
2
點(diǎn)評:本題考查了指數(shù)函數(shù)的單調(diào)性的應(yīng)用及最值的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某高中采用系統(tǒng)抽樣的方法從該校高一年級1600名學(xué)生中抽取50名學(xué)生作視力健康檢查.現(xiàn)將1600名學(xué)生從1到1600進(jìn)行編號.已知從65~96這32個數(shù)中取的數(shù)是78,則在第1小組1~32中抽到的數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有學(xué)生55人,其中音樂愛好者34人,體育愛好者43人,還有4人既不愛好體育也不愛好音樂,則班級中即愛好體育又愛好音樂的有
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
3x-13
x-7
≤2}
,B={x|-x3+7x2-12x>0},C={x|1-k<x≤1+k},
(1)求A∩B;
(2)若A∪C=A,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,其中i為虛數(shù)單位,z1=1+i,z2=2+bi,若z1•z2為實(shí)數(shù),則實(shí)數(shù)b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|1≤x<b},∁UA={x|x<1或x≥2},則實(shí)數(shù)b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,公差d≠0,a1=1,a1、a2、a5成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn,求滿足Tn
100
207
的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1中,O是底面ABCD對角線的交點(diǎn),求證:
(1)C1O∥面AB1D1
(2)A1C⊥面AB1D1
(3)若AA1=2,求A1到面AB1D1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“p∧q”是假命題,則( 。
A、p∨q為假命題
B、(?p)∨(?q)為真命題
C、(?p)∨(?q)為假命題
D、p∨q為真命題

查看答案和解析>>

同步練習(xí)冊答案