已知命題p:存在x∈R,x2+mx+1<0,q:任意x∈R,sinx+cosx>m,若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:計(jì)算題,簡(jiǎn)易邏輯
分析:由p真可得m>2或m<-2;q真可得m<-
2
;且p∨q為真,p∧q為假可得p、q一真一假,討論即可.
解答: 解:若p真,則△=m2-4>0,則m>2或m<-2;
若q真,則m<(sinx+cosx)min=-
2
;
∵p∨q為真,p∧q為假,
∴p、q一真一假,
若p真、q假,
m>2或m<-2
m≥-
2
,即m>2;
若p假q真,則
-2≤m≤2
m<-
2
,即-2≤m<-
2
,
則實(shí)數(shù)m的取值范圍為[-2,-
2
)∪(2,+∞).
點(diǎn)評(píng):本題考查了復(fù)合命題的真假性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足2iz=(-1+3i)(1-i),其中i是虛數(shù)單位,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上任意一點(diǎn)到兩焦點(diǎn)距離之和為2
5
,離心率為
5
5
,左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是右準(zhǔn)線上任意一點(diǎn),過(guò)F2作直線PF2的垂線F2Q交橢圓于Q點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與直線OQ的斜率之積是定值;
(3)點(diǎn)P的縱坐標(biāo)為3,過(guò)P作動(dòng)直線l與橢圓交于兩個(gè)不同點(diǎn)M,N,在線段MN上取點(diǎn)H(異于點(diǎn)M,N),滿足
MP
PN
=
MH
HN
,試證明點(diǎn)H恒在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求不等式的解集:4x2-20x<25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
lg3+2lg9+3lg
27
-lg
3
lg81-lg27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R,若(ax2+
b
x
)6
的展開式中x3項(xiàng)的系數(shù)為160,則a2+b2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線y=
1-ex,x≤1
1
x-1
,x>1
與直線y=kx+1有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A、(-3-2
2
,-3+2
2
)
B、(-3+2
2
,0)∪(0,+∞)
C、(-∞,-3-2
2
)∪(0,+∞)
D、(-3-2
2
,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.BQ=t
(1)若在邊BC上存在一點(diǎn)Q,使PQ⊥QD,求a與t關(guān)系;
(2)在(1)的條件下求a的取值范圍;
(3)(理科做,文科不做)當(dāng)邊BC上存在唯一點(diǎn)Q,使PQ⊥QD時(shí),求二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1相交,則雙曲線兩漸近線的夾角取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案