【題目】已知函數(shù)f(x)=.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數(shù)單調性定義證明:f(x)在(1,+∞)上是增函數(shù).
【答案】(Ⅰ){x|x≠±1}(Ⅱ)f(x)為偶函數(shù)(III)見解析
【解析】
試題分析:(Ⅰ)根據函數(shù)成立的條件進行求解即可.(Ⅱ)根據函數(shù)奇偶性的定義進行證明.
(Ⅲ)根據函數(shù)單調性的定義進行證明.
試題解析:
(Ⅰ)由1﹣x2≠0,得x≠±1,即f(x)的定義域{x|x≠±1};
(Ⅱ)f(x)為偶函數(shù).
∵f(x)定義域關于原點對稱,且f(﹣x)=f(x)
∴f(x)為偶函數(shù);…
(III)證明:
設1<x1<x2,則f(x1)﹣f(x2)==2()
,
∵1<x1<x2,
∴x1﹣x2<0,1﹣x2<0,1﹣x1<0,
則f(x1)﹣f(x2)<0,即f(x1)<f(x2),
則函數(shù)f(x)在(1,+∞)上是增函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】隨著互聯(lián)網的發(fā)展,移動支付(又稱手機支付)越來越普遍,某學校興趣小組為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調查,調查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有個人,把這個人按照年齡分成5組:第1組,第2組,第3組,第4組,第5組,然后繪制成如圖所示的頻率分布直方圖,其中,第一組的頻數(shù)為20.
(1)求和的值,并根據頻率分布直方圖估計這組數(shù)據的眾數(shù);
(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);
(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有某高新技術企業(yè)年研發(fā)費用投入(百萬元)與企業(yè)年利潤(百萬元)之間具有線性相關關系,近5年的年科研費用和年利潤具體數(shù)據如下表:
年科研費用(百萬元) | 1 | 2 | 3 | 4 | 5 |
企業(yè)所獲利潤(百萬元) | 2 | 3 | 4 | 4 | 7 |
(1)畫出散點圖;
(2)求對的回歸直線方程;
(3)如果該企業(yè)某年研發(fā)費用投入8百萬元,預測該企業(yè)獲得年利潤為多少?
參考公式:用最小二乘法求回歸方程的系數(shù)計算公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知橢圓兩個焦點的坐標分別是, ,并且經過點.
(1)求橢圓的標準方程;
(2) 已知是橢圓的左頂點,斜率為的直線交橢圓于, 兩點,
點在上, , ,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點F1與拋物線y2=﹣4x的焦點重合,橢圓E的離心率為 ,過點M(m,0)(m> )做斜率存在且不為0的直線l,交橢圓E于A,C兩點,點P( ,0),且 為定值.
(1)求橢圓E的方程;
(2)過點M且垂直于l的直線與橢圓E交于B,D兩點,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據.
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請根據上表提供的數(shù)據,用最小二乘法求出y關于x的線性回歸方程;
(2)試根據(1)求出的線性回歸方程,預測燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).
(相關公式:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,若函數(shù)的最小正周期為,且在上單調遞減.
(1)求的解析式;
(2)若關于的方程在有實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,其中,若,就稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com