【題目】已知F1、F2分別是雙曲線 的左右焦點(diǎn),A為雙曲線的右頂點(diǎn),線段AF2的垂直平分線交雙曲線與P,且|PF1|=3|PF2|,則該雙曲線的離心率是( )
A.
B.
C.
D.

【答案】C
【解析】解:∵F1、F2分別是雙曲線 的左右焦點(diǎn),
A為雙曲線的右頂點(diǎn),且|PF1|=3|PF2|,
∴|PF1|﹣|PF2|=2|PF2|=2a,
∴|PF1|=3a,|PF2|=a,
∵線段AF2的垂直平分線交雙曲線于P,
∴P點(diǎn)橫坐標(biāo)xP= ,
設(shè)線段AF2的垂直平分線交x軸于B,則|F1B|= ,|BF2|= ,
∴(3a)2﹣( 2=a2﹣( 2 ,
整理,得當(dāng)8a2﹣2c2﹣2ac=0,
∴e2+e﹣4=0,
解得e= ,或e= (舍).
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個(gè)各面都涂了油漆的正方體,切割為125個(gè)同樣大小的小正方體,經(jīng)過攪拌后,從中隨機(jī)取一個(gè)小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知k∈R, =(k,1), =(2,4),若| |< ,則△ABC是鈍角三角形的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:x2=2py(p>0),直線y=kx+2與E交于A、B兩點(diǎn),且 =2,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為(0,﹣2),記直線CA、CB的斜率分別為k1 , k2 , 證明:k12+k22﹣2k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù)),點(diǎn)A的極坐標(biāo)為( , ),設(shè)直線l與圓C交于點(diǎn)P、Q.
(1)寫出圓C的直角坐標(biāo)方程;
(2)求|AP||AQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2ccosA+a=2b
(1)求角C的值;
(2)若c=2,且△ABC的面積為 ,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點(diǎn),且CD=DE= ,CE=2EB=2

(1)證明:DE⊥平面PCD
(2)求二面角B﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別是a,b,c,B是鈍角,且 a=2bsinA.
(1)求B的大。
(2)若△ABC的面積為 ,且b=7,求a+c的值;
(3)若b=6,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大;
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案