如圖,△ABC為直角三角形,BD⊥AC,證明:
AB•BC
AC
=BD.
考點:直角三角形的射影定理
專題:解三角形
分析:由已知條件推導出Rt△ABC∽Rt△BDC,由此能證明
AB•BC
AC
=BD.
解答: 解:在Rt△ABC和Rt△BDC中,
∴∠ABC=∠BDC,∠C=∠C,
∴Rt△ABC∽Rt△BDC,
AB
BD
=
AC
BC
,
AB•BC
AC
=BD.
點評:本題考查直角三角形射影定理的應用,解題時要認真審題,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知角α的終邊過點A(-2,4),求下列各式的值.
(1)2sin2α-sinαcosα-cos2α;
(2)tan2α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=log
1
2
3-2x-x2
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(x+a).
(1)若0<f(1-2x)-f(x)<
1
2
,當a=1時,求x的取值范圍;
(2)若定義在R上奇函數(shù)g(x)滿足g(x+2)=-g(x),且當0≤x≤1時,g(x)=f(x),求g(x)在[-3,-1]上的反函數(shù)h(x);
(3)對于(2)中的g(x),若關(guān)于x的不等式g(
t-2 x
8+2 x+3
)≥1-log23在R上恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
sin(x-
π
12
),x∈R
(Ⅰ)直接寫出f(x)的最大值及對應的x的集合;
(Ⅱ)若sinθ=-
4
5
,θ∈(
2
,2π),求f(2θ+
π
3
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過坐標原點作曲線y=lnx的切線l,該切線l與曲線y=lnx及x軸圍成圖形為D.
(1)求切線l的方程.
(2)求區(qū)域D的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的方程:x2+ax+
1
4
(a2+3)=x2+x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心在坐標原點、對稱軸為坐標軸,且拋物線x2=-4
2
y的焦點是它的一個焦點,又點A(1,
2
)在該橢圓上.
(1)求橢圓E的方程;
(2)若斜率為
2
直線l與橢圓E交于不同的兩點B、C,當△ABC的面積為
2
時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在30°的二面角α-l-β的棱上有兩點A,B,點C,D分別在α,β內(nèi),且AC⊥AB,BD⊥AB,AC=BD=AB=1,則CD的長度為
 

查看答案和解析>>

同步練習冊答案