已知f(x)=
1
3
x3-
1
2
x2,則f(x)遞增區(qū)間是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)數(shù)f′(x),在定義域內(nèi)解不等式f′(x)>0即可.
解答: 解:∵f(x)=
1
3
x3-
1
2
x2,
∴f′(x)=x2-x=x(x-1),
由f′(x)>0,得x<0或x>1,
∴f(x)遞增區(qū)間是(-∞,0),(1,+∞),
故答案為:(-∞,0),(1,+∞).
點(diǎn)評:該題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬基礎(chǔ)題,正確理解導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:向量
OA
OB
不共線,設(shè)
OP 
=a
OA
+b
OB
,a,b均為實(shí)數(shù),且滿足a+b=1,則A,B,P三點(diǎn)共線.
(1)將此命題類比到空間,闡述一個相似的正確命題:向量
OA
,
OB
,
OC
不共面.若點(diǎn)P滿足向量關(guān)系:
 
,則
 

(2)證明(1)中的命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8c在x=1及x=2時取得極值.
(Ⅰ)求a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[0,3]上的最大值是-7.求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(1,-1).
(1)若θ為向量2
a
+
b
與向量
a
-
b
的夾角,求θ的值;
(2)若向量2
a
+
b
與向量k
a
+
b
垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù)
(1)y=(2x+1)(x2-3)
(2)y=
x2
ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個不重合的平面,給定下列四個命題,其中為真命題的序號為
 

m⊥n
n?α
⇒m⊥α
a⊥α
a?β
⇒α⊥β
m⊥α
n⊥α
⇒m∥n
n?β
α∥β
⇒m∥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-a+lnx
x
,a∈R.則有f(x)的極大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項之和是Sn,Sn=2n2-3n+1,那么數(shù)列的通項公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2-5x+6≥0的解集為
 

查看答案和解析>>

同步練習(xí)冊答案