分析:已知y=f(x),求y=f-1(x)的步驟:①把y看成常數(shù),求出x:x=f-y;②x,y互換,得到y(tǒng)=f-1(x);③寫(xiě)出y=f-1(x)的定義域.由此利用題設(shè)條件,能夠求出所給函數(shù)的反函數(shù).
解答:解:(1)∵y=
f(x)=(x≤-1),
∴x
2+x-y
2=0,x≤-1,且y≥0.
∴
x=,
x,y互換,得
f(x)=(x≤-1)的反函數(shù)為
y=,x≥0;
(2)y=x|x|+2x,
當(dāng)x≥0時(shí),y=x
2+2x,且y≥0,
x==-1+,
x,y互換,得y=x
2+2x的反函數(shù)為
x=-1+ ,x≥0.
當(dāng)x<0時(shí),y=-x
2+2x,且y<0,
x==-1-,
x,y互換,得y=-x
2+2x的反函數(shù)為
y=-1-,x<0.
∴y=x|x|+2x的反函數(shù)為
y=;
(3)
f(x)=,
當(dāng)0≤x≤1時(shí),y=x
2-1∈[-1,0],
x
2=y+1,
x=
,
x,y互換,得y=x
2-1∈[-1,0]的反函數(shù)為
y=,-1≤x≤0.
當(dāng)-1≤x<0時(shí),y=x
2∈(0,1],
x=-,
x,y互換,得y=x
2∈(0,1]的反函數(shù)為
y=-,0<x≤1.
∴
f(x)=的反函數(shù)
f-1(x)=;
(4)∵y=x
3-3x
2+3x+1,
∴y-2=x
3-3x
2+3x-1=(x-1)
3,
x-1=(y-2)
,
∴x=(y-2)
+1,
∴y=x
3-3x
2+3x+1的反函數(shù)是y=
(x-2)+1,x∈R;
(5)∵y=log
2(x
2+1)(x<0)
∴x
2+1=2
y,且y>0
x
2=2
y-1,
x=-
,
x,y互換,得y=log
2(x
2+1)(x<0)的反函數(shù)為
y=-,x>0.
點(diǎn)評(píng):本題考查反函數(shù)的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意反函數(shù)定義域的求法.