函數(shù)f(x)的導函數(shù)圖象如圖所示,則函數(shù)f(x)的極小值點個數(shù)有(  )
A.0個B.1個C.2個D.3個

從f′(x)的圖象可知f(x)從左到右的單調(diào)性依次為增→減→增→減,
根據(jù)極值點的定義可知函數(shù)只有一個極小值點.
故答案為B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的最大值是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx-
1
2
ax2
-2x.
(Ⅰ)當a=3時,求函數(shù)f(x)的極大值;
(Ⅱ)若函數(shù)f(x)存在單調(diào)遞減區(qū)間,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=x3在點x=1處的切線方程是( 。
A.y=3x-2B.y=3x-4C.y=2x-1D.y=2x-2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設a∈R,若函數(shù)y=x3+ax,x∈R有大于零的極值點,則( 。
A.a(chǎn)>0B.a(chǎn)<0C.a(chǎn)≥0D.a(chǎn)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=ax+
1
x+b
(a,b∈Z),曲線y=f(x)在點(2,f(2)處的切線方程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數(shù)在(1,f(1))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=xn,其中n∈Z,n≥2.曲線y=f(x)在點P(x0,f(x0))(x0>0)處的切線為l,l與x軸交于點Q,與y軸交于點R,則
|PQ|
|PR|
=( 。
A.
1
n-1
B.
1
n
C.
2
n-1
D.
2
n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求曲線y=
1
x
和y=x2在它們交點處的兩條切線與x軸所圍成的三角形面積.

查看答案和解析>>

同步練習冊答案