設(shè)二次函數(shù)f(x)=ax2+bx+c,函數(shù)F(x)=f(x)-x的兩個(gè)零點(diǎn)為m,n(m<n).
(1)若m=-1,n=2,求不等式F(x)>0的解集;
(2)若a>0,且0<x<m<n<,比較f(x)與m的大。
(1)當(dāng)a>0時(shí),不等式F(x)>0的解集為{x|x<-1或x>2};當(dāng)a<0時(shí),不等式F(x)>0的解集為{x|-1<x<2}.
(2)f(x)<m.
解:(1)由題意知,F(xiàn)(x)=f(x)-x=a(x-m)(x-n),
當(dāng)m=-1,n=2時(shí),不等式F(x)>0,
即a(x+1)(x-2)>0.
當(dāng)a>0時(shí),不等式F(x)>0的解集為{x|x<-1或x>2};當(dāng)a<0時(shí),不等式F(x)>0的解集為{x|-1<x<2}.
(2)f(x)-m=F(x)+x-m=a(x-m)(x-n)+x-m=(x-m)(ax-an+1),
∵a>0,且0<x<m<n<,
∴x-m<0,1-an+ax>0.
∴f(x)-m<0,即f(x)<m.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖為某三岔路口交通環(huán)島的簡(jiǎn)化模型,在某高峰時(shí)段,單位時(shí)間進(jìn)出路口A,B,C的機(jī)動(dòng)車輛數(shù)如圖所示,圖中x1,x2,x3分別表示該時(shí)段單位時(shí)間通過路段
AB
,
BC
,
CA
的機(jī)動(dòng)車輛數(shù)(假設(shè):?jiǎn)挝粫r(shí)間內(nèi),在上述路段中,同一路段上駛?cè)肱c駛出的車輛數(shù)相等),則(  )
A.x1>x2>x3B.x1>x3>x2C.x2>x3>x1D.x3>x2>x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

不等式的解集是(   )
A.{x |-1≤x≤5}B.{x | x≥5或x≤-1}
C.{x |-1< x < 5}D.{x | x > 5或x <-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列不等式的解集是空集的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若不等式ax2+bx+2>0的解集為-<x<,則不等式2x2+bx+a<0的解集是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若不等式對(duì)任意恒成立,則實(shí)數(shù)的取值范圍為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2013•重慶)設(shè)0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0對(duì)x∈R恒成立,則α的取值范圍為 _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

“0<a<1”是“ax2+2ax+1>0的解集是實(shí)數(shù)集R”的(  )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

不等式組的解集為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案