如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形, ,且點(diǎn)滿足 .

(1)證明:平面 .

(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置,若不存在請(qǐng)說(shuō)明理由 .

 

【答案】

(1)  6分

(2)  當(dāng)中點(diǎn)時(shí),平面,

 推出 ,證得, 從而平面。

【解析】

試題分析:(1)  6分

(2)  當(dāng)中點(diǎn)時(shí),平面,

理由如下:設(shè),交于點(diǎn)

因?yàn)? ,所以 ,

所以 , 從而平面      6分

考點(diǎn):本題主要考查立體幾何中的垂直、平行關(guān)系。

點(diǎn)評(píng):基礎(chǔ)題,立體幾何中的垂直、平行關(guān)系,是高考考查的基本問(wèn)題,熟悉定理是關(guān)鍵,同時(shí),要注意空間問(wèn)題與平面問(wèn)題的相互轉(zhuǎn)化。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題

((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知


(1)證明平面;
(2)求異面直線所成的角的大;
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省三明市高三第一學(xué)期測(cè)試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如圖,在四棱錐中,底面是菱形,,,平面,的中點(diǎn),的中點(diǎn).    

(Ⅰ) 求證:∥平面;

(Ⅱ)求證:平面⊥平面

(Ⅲ)求平面與平面所成的銳二面角的大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆上海市高二年級(jí)期終考試數(shù)學(xué) 題型:解答題

(本題滿分16分)

如圖,在四棱錐中,底面是矩形.已知

(1)證明平面;

(2)求異面直線所成的角的大。

(3)求二面角的大。

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高二下學(xué)期期末考試附加卷數(shù)學(xué)卷 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)棱,中點(diǎn),作

(1)求PF:FB的值

(2)求平面與平面所成的銳二面角的正弦值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:解答題

(本小題滿分14分)

如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(Ⅰ)當(dāng)時(shí),求證平面

(Ⅱ)當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案