【題目】如圖,四面體中, 平面, , , , .
(Ⅰ)求四面體的四個面的面積中,最大的面積是多少?
(Ⅱ)證明:在線段上存在點(diǎn),使得,并求的值.
【答案】(Ⅰ) ;(Ⅱ)證明見解析.
【解析】試題分析:(1)易得, , , 均為直角三角形,且的面積最大,進(jìn)而求解即可;
(2)在平面ABC內(nèi),過點(diǎn)B作BN⊥AC,垂足為N.在平面PAC內(nèi),過點(diǎn)N作MN∥PA交PC于點(diǎn)M,連接BM,可證得AC⊥平面MBN,從而使得AC⊥BM,利用相似和平行求解即可.
試題解析:
(1)由題設(shè)AB=1,AC=2,BC=,
可得,所以,
由PA⊥平面ABC,BC、AB平面ABC,所以, ,
所以,
又由于PA∩AB=A,故BC⊥平面PAB,
PB平面PAB,所以,
所以, , , 均為直角三角形,且的面積最大,
.
(2)證明:在平面ABC內(nèi),過點(diǎn)B作BN⊥AC,垂足為N.在平面PAC內(nèi),過點(diǎn)N作MN∥PA交PC于點(diǎn)M,連接BM.
由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.
由于BN∩MN=N,故AC⊥平面MBN.
又BM平面MBN,所以AC⊥BM.
因?yàn)?/pan>與相似, ,
從而NC=AC-AN=.
由MN∥PA,得==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調(diào)函數(shù);②函數(shù), 的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.
()求函數(shù)的所有“保值”區(qū)間.
()函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知U={y|y=log2x,x>1},P={y|y= ,x>2},則UP=( )
A.[ ,+∞)
B.(0, )
C.(0,+∞)
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的兩頂點(diǎn)坐標(biāo)A(﹣1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=1(從圓外一點(diǎn)到圓的兩條切線段長相等),動點(diǎn)C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設(shè)直線BC與曲線M的另一交點(diǎn)為D,當(dāng)點(diǎn)A在以線段CD為直徑的圓上時,求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求函數(shù)的值域;
(2)如果對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使得函數(shù)的最大值為0,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)一定不是R上的減函數(shù);
②用反證法證明命題“若實(shí)數(shù)a,b,滿足a2+b2=0,則a,b都為0”時,“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)a,b都不為0”.
③把函數(shù)y=sin(2x+ )的圖象向右平移 個單位長度,所得到的圖象的函數(shù)解析式為y=sin2x.
④“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)集,其中, .定義向量集.若對于任意,存在,使得,則稱具有性質(zhì).例如具有性質(zhì).
(1)若,且具有性質(zhì),求的值;
(2)若具有性質(zhì),求證: ,且當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=a(a>0),其前n項和為Sn , 設(shè)bn=an+an+1(n∈N*).
(1)若a2=a+1,a3=2a2 , 且數(shù)列{bn}是公差為3的等差數(shù)列,求S2n;
(2)設(shè)數(shù)列{bn}的前n項和為Tn , 滿足Tn=n2 .
①求數(shù)列{an}的通項公式;
②若對n∈N*,且n≥2,不等式(an﹣1)(an+1-1)≥2(1﹣n)恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com