9.已知m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是( 。
A.若α⊥β,m∥α,則m⊥βB.若m⊥α,n⊥β,且m⊥n,則α⊥β
C.若m?α,n?β,且α∥β,則m∥nD.若m∥α,n∥β,且m∥n,則α∥β

分析 利用面面垂直、線面平行、線面垂直想性質(zhì)定理和判定定理對選項分析即可.

解答 解:對于A,若α⊥β,m∥α,則m與β可能平行;故A錯誤;
對于B,若m⊥α,n⊥β,且m⊥n,根據(jù)面面垂直的定義α⊥β;故B正確;
對于C,若m?α,n?β,且α∥β,m,n共面,則m∥n;故C不正確;
對于D,若m∥α,n∥β,且m∥n,則α與β可能相交;故D錯誤.
故選B.

點評 本題考查了面面垂直、線面平行、線面垂直想性質(zhì)定理和判定定理的運用判斷線面關(guān)系和面面關(guān)系;關(guān)鍵是熟練掌握定理的條件,注意特殊情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點,其導(dǎo)函數(shù)為f'(x)=6x+2,數(shù)列{an}的前n項和為Sn,點$({n,{S_n}})({n∈{N^*}})$均在函數(shù)y=f(x)的圖象上.
(I)求數(shù)列{an}的通項公式;
(II)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,Tn是數(shù)列{bn}的前n項和,若Tn=m對所有n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為$\frac{\sqrt{5}}{2}$,點F1、F2是其左右焦點,點P(5,y0)與點Q是雙曲線上關(guān)于坐標(biāo)原點對稱的兩點,則四邊形F1QF2P的面積為6$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某超市選取了5個月的銷售額和利潤額,資料如表:
銷售額x(千萬元)35679
利潤額y(百萬元)23345
(1)求利潤額y對銷售額x的回歸直線方程;
(2)當(dāng)銷售額為4(千萬元)時,估計利潤額的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(1+tan23°)(1+tan22°)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)y=x3-ax2+4在(1,3)內(nèi)單調(diào)遞減,則實數(shù)a的取值范圍是$[\frac{9}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知角θ為第二象限角,則點M(sinθ,cosθ)位于哪個象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.對于定義域為R的函數(shù)f(x),若存在非零實數(shù)x0,使函數(shù)f(x)在(-∞,x0)和(x0,+∞)上與x軸均有交點,則稱x0為函數(shù)f(x)的一個“界點”.則下列四個函數(shù)中,不存在“界點”的是( 。
A.f(x)=x2+bx-1(b∈R)B.f(x)=|x2-1|C.f(x)=2-|x-1|D.f(x)=x3+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求函數(shù)f(x)=$\sqrt{{x}^{2}+1}$-x在[1,+∞)上的最大值.

查看答案和解析>>

同步練習(xí)冊答案