18.若sinα=2cosα,函數(shù)f(x)=2x-tanα,則f(0)=-1.

分析 利用同角三角函數(shù)的基本關(guān)系求得tanα=2,可得f(x)的解析式,從而求得f(0)的值.

解答 解:若sinα=2cosα,則tanα=2,∴函數(shù)f(x)=2x-tanα=2x-2,
則f(0)=20-2=-1,
故答案為:-1.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,求函數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$sin(3π+θ)=\frac{1}{3}$,且θ是第二象限角,則tanθ=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=$\sqrt{-{x^2}+4x+2}$的值域是( 。
A.$(-∞,\sqrt{6}]$B.(-∞,2]C.$[{\sqrt{6},+∞})$D.[0,$\sqrt{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)曲線y=$\frac{x+1}{x-1}$在點(diǎn)(2,3)處的切線與直線ax+y+1=0垂直,則a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足(3+4i)z=|3-4i|,其中i為虛數(shù)單位,則z虛部為( 。
A.$-\frac{4}{5}$B.$-\frac{4}{5}i$C.$\frac{4}{5}$D.$\frac{4}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)={({\frac{1}{3}})^x}-{x^2}$,若f(x0)=m,x1∈(0,x0),x2∈(x0,+∞),則( 。
A.f(x1)≥m,f(x2)<mB.f(x1)<m,f(x2)>mC.f(x1)<m,f(x2)<mD.f(x1)>m,f(x2)>m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a,b,c,且ac=2b2
(Ⅰ)求證:$cosB≥\frac{3}{4}$;
(Ⅱ)若cos(A-C)+cosB=1,求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)F(1,0),其準(zhǔn)線與x軸的交點(diǎn)為K,過點(diǎn)K的直線l與C交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為D.
(1)證明:點(diǎn)F在直線BD上;
(2)設(shè)$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知長方體的長、寬、高分別為3,4,5,則體對角線長度為$5\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案