16.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1}{1+i}$-$\frac{1}{1-i}$=$\frac{1+z}{1-z}$,則|z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用復(fù)數(shù)的運算法則、模的計算公式即可得出.

解答 解:∵$\frac{1}{1+i}$-$\frac{1}{1-i}$=$\frac{1-i-(1+i)}{(1+i)(1-i)}$=-i,
∴-i=$\frac{1+z}{1-z}$,化為:z=$\frac{-(1+i)}{1-i}$=$\frac{-(1+i)^{2}}{(1-i)(1+i)}$=$\frac{-2i}{2}$=-i
則|z|=1.
故選:A.

點評 本題考查了復(fù)數(shù)的運算法則、模的計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A=[$\begin{array}{l}2&0\\{-1}&1\end{array}}$],B=[$\begin{array}{l}2&4\\ 3&5\end{array}}$],且二階矩陣M滿足AM=B.
(1)求A-1;
(2)求矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{4}{3}$x3-2x2+ax+b的圖象在點P(0,f(0))處的切線方程為y=2x+1.
(I)求實數(shù)a、b的值;
(Ⅱ)設(shè)g(x)=f(x)+$\frac{m}{2x-1}$是[1,+∞)上的增函數(shù),
(i)求實數(shù)m的最大值;
(ii)當(dāng)m取最大值時,是否存在點Q,使得過點Q的直線能與曲線y=g(x)圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等?若存在,求出點Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.從一個裝有6個彩色球(3紅,2黃,1藍(lán))的盒子中隨機(jī)地取出2個球,則兩球顏色相同的概率是$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知Sn為等差數(shù)列{an}的前n項的和,S1>0,且S4>S6,則S10為正數(shù).(填“正數(shù)”、“負(fù)數(shù)”或“零”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\frac{{x{e^x}+x+2}}{{{e^x}+1}}$+sinx,則f(-4)+f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)+f(4)的值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R且a>0),則“f(f(-$\frac{2a}$))<0”是“f(x)與f(f(x))都恰有兩個零點”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(Ⅰ)已知橢圓的長軸是短軸的3倍,且過點A(3,0),并且以坐標(biāo)軸為對稱軸,求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)已知拋物線的頂點在原點,對稱軸為x軸,拋物線上一點P(-3,a)到焦點的距離為5,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸在原點相切,且x軸與函數(shù)圖象所圍成的區(qū)域(如圖陰影部分)的面積為$\frac{1}{12}$,則a的值為-1.

查看答案和解析>>

同步練習(xí)冊答案