5.經(jīng)過點(-1,1),斜率是直線y=$\frac{\sqrt{2}}{2}$x-2的斜率的2倍的直線方程是( 。
A.x=-1B.y=1C.y-1=$\sqrt{2}$(x+1)D.y-1=2$\sqrt{2}$(x+1)

分析 根據(jù)直線的點斜式方程求出直線方程即可.

解答 解:由題意得:所求直線的斜率是k=$\sqrt{2}$,
故所求直線方程是:y-1=$\sqrt{2}$(x+1),
故選:C.

點評 本題考查了求直線方程問題,熟練掌握直線方程是解題的關鍵,本題是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若函數(shù)g(x+2)=2x2-3x,則g(3)的值是( 。
A.35B.9C.-1D.-13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.圓心在x軸上,半徑為1,且過點(2,1)的圓的方程是(  )
A.(x-2)2+y2=1B.(x+2)2+y2=1C.(x-1)2+(y-3)2=1D.x2+(y-2)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.對于定義在R上的奇函數(shù)f(x),滿足f(x+3)=f(x),若f(-1)=1,則f(1)+f(2)+…+f(10)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.$\int_0^1{({\sqrt{2x-{x^2}}-x})dx}$等于( 。
A.$\frac{π-2}{4}$B.$\frac{π-2}{2}$C.$\frac{π-1}{2}$D.$\frac{π-1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若直線ax-by+1=0(a>0,b>0)分圓C:x2+y2+2x-4y+1=0的周長,則ab的取值范圍是( 。
A.(-∞,$\frac{1}{8}$]B.(0,$\frac{1}{8}$]C.(0,$\frac{1}{4}$]D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設等比數(shù)列{an}滿足a1+a3=10,a2+a4=5,則a8=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線4x2-$\frac{y^2}{9}$=1的漸近線方程是( 。
A.y=±$\frac{2}{3}$xB.y=±$\frac{1}{6}$xC.y=±$\frac{3}{2}$xD.y=±6x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在△ABC內取一點M,使得∠MBA=30°,∠MAC=40°,且MA=MB=BC,求∠MAB.

查看答案和解析>>

同步練習冊答案