【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

1)補(bǔ)全頻率分布直方圖并求、的值;

2)從歲年齡段的低碳族中采用分層抽樣法抽取18人參加戶外低碳體驗(yàn)活動(dòng),如何抽。

【答案】1)圖像見解析, 2)利用抽簽法或隨機(jī)數(shù)表法在年齡段的低碳族中抽取12人,從年齡段的低碳族中抽取6.

【解析】

1)由頻率分布直方圖中所有頻率(面積)和為1可得的頻率,從而可補(bǔ)全頻率分布直方圖,并由頻率分布直方圖及表格中數(shù)據(jù)得出

2)根據(jù)年齡段的低碳族年齡段的低碳族的人數(shù)比為,借助分層抽樣的方法即可得出結(jié)果.

1)第2組的頻率為,所以小矩形的高為,則補(bǔ)全的頻率分布直方圖如下:

1組人數(shù)為,頻率為,所以.

又第2組的頻率為0.3,故第2組人數(shù)為,所以.

4組的頻率為,所以第4組人數(shù)為,所以.

2)因?yàn)?/span>年齡段的低碳族年齡段的低碳族的人數(shù)比為,所以采用分層隨機(jī)抽樣的方法抽取18人,從年齡段的低碳族中應(yīng)抽取12人,從年齡段的低碳族中應(yīng)抽取6.

所以,利用抽簽法或隨機(jī)數(shù)表法在年齡段的低碳族中抽取12人,從年齡段的低碳族中抽取6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng)為何值時(shí),銷售額最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的極小值;

2)若上,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于項(xiàng)數(shù)為)的有窮正整數(shù)數(shù)列,記),即中的最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.

1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫出所有可能的數(shù)列;

2)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿足),求證: );

3)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求出所有的數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是直角梯形,,平面ABCD,,

SC與平面ASD所成的角余弦值;

求平面SAB和平面SCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有、、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎(jiǎng),在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四件參賽作品的獲獎(jiǎng)情況預(yù)測(cè)如下.

甲說:“、同時(shí)獲獎(jiǎng).”

乙說:“、不可能同時(shí)獲獎(jiǎng).”

丙說:“獲獎(jiǎng).”

丁說:“、至少一件獲獎(jiǎng)”

如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測(cè)是正確的,則獲獎(jiǎng)的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年的金秋十月,越野e族阿拉善英雄會(huì)在內(nèi)蒙古自治區(qū)阿拉善盟阿左旗騰格里沙漠舉行,該項(xiàng)目已打造成集沙漠競(jìng)技運(yùn)動(dòng)、汽車文化極致體驗(yàn)、主題休閑度假為一體的超級(jí)汽車文化賽事娛樂綜合體.為了減少對(duì)環(huán)境的污染,某環(huán)保部門租用了特制環(huán)保車清潔現(xiàn)場(chǎng)垃圾.通過查閱近5年英雄會(huì)參會(huì)人數(shù)(萬人)與沙漠中所需環(huán)保車輛數(shù)量(輛),得到如下統(tǒng)計(jì)表:

參會(huì)人數(shù)(萬人)

11

9

8

10

12

所需環(huán)保車輛(輛)

28

23

20

25

29

(1)根據(jù)統(tǒng)計(jì)表所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程

(2)已知租用的環(huán)保車平均每輛的費(fèi)用(元)與數(shù)量(輛)的關(guān)系為

.主辦方根據(jù)實(shí)際參會(huì)人數(shù)為所需要投入使用的環(huán)保車,

每輛支付費(fèi)用6000元,超出實(shí)際需要的車輛,主辦方不支付任何費(fèi)用.預(yù)計(jì)本次英雄會(huì)大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測(cè)環(huán)保部門在確保清潔任務(wù)完成的前提下,應(yīng)租用多少輛環(huán)保車?獲得的利潤(rùn)是多少?(注:利潤(rùn)主辦方支付費(fèi)用租用車輛的費(fèi)用).

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)在點(diǎn)處的切線.

)求的解析式.

)求證:

)設(shè),其中.若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求證:AC⊥A1B;

(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案