設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且Sn滿足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有
1
a1a3
+
1
a2a4
+
1
a3a5
+…+
1
anan+2
3
16
考點:數(shù)列的求和,數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:(1)直接在數(shù)列遞推式中取n=1求得首項;
(2)由原數(shù)列遞推式求解Sn,再由an=Sn-Sn-1(n≥2)得答案;
(3)利用裂項相消法求和后放縮證明數(shù)列不等式.
解答: 解:(1)由Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*
令n=1,得:S12-(-1)S1-3×2=0,即S12+S1-6=0,
∵S1>0,解得a1=S1=2;
(2)由Sn2-(n2+n-3)Sn-3(n2+n)=0,得(Sn+3)[Sn-(n2+n)]=0
∵an>0,
∴Sn>0,從而Sn+3>0,Sn=n2+n
當(dāng)n≥2時,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
又a1=2,
∴an=2n;
(3)由(2)知,an=2n.
故有
1
a1a3
+
1
a2a4
+
1
a3a5
+…+
1
anan+2
=
1
2×6
+
1
4×8
+
1
6×10
+…+
1
2n(2n+4)

=
1
4
[
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
]

=
1
4
[
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2
)]

=
1
8
(1+
1
2
-
1
n+1
-
1
n+1
)<
1
8
(1+
1
2
)=
3
16
點評:本題考查了數(shù)列遞推式,考查了裂項相消法求數(shù)列的和,訓(xùn)練了放縮法證明數(shù)列不等式,是壓軸題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|x2-x-2=0},B={y|y=x+1,x∈A},則∁U(A∩B)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
x
的定義域是
 
,值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:5x+3y=0和l2:5x-3y=0,寫出兩個以直線l1和l2為漸近線的雙曲線標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一水渠的橫截面如圖所示,它的橫截面曲線是拋物線形,AB寬2m,渠OC深為1.5m,水面EF距AB為0.5m.
(1)求截面圖中水面寬度;
(2)如把此水渠改造成橫截面是等腰梯形,要求渠深不變,不準(zhǔn)往回填土,只準(zhǔn)挖土,試求截面梯形的下邊長為多大時,才能使所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
4
5
,an+1=
2an,0≤an
1
2
2an-1,
1
2
an≤1
,則a2014=(  )
A、
4
5
B、
2
5
C、
1
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2,向量
a
b
的夾角為60°,則|
a+b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin(x-
π
4
),f′(x)是f(x)的導(dǎo)函數(shù).
(1)求函數(shù)F(x)=[f′(x)]2-f(x)f′(x)的最小值和相應(yīng)的x值.
(2)若f(x)=2f′(x),求
3-cos2x
cos2x-sinxcosx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=log
1
2
(x2-2ax+3)
,解答下述問題:
(1)若函數(shù)的定義域為R,求實數(shù)a的取值范圍;
(2)若函數(shù)的值域為(-∞,-1],求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案