【題目】為了考查兩個變量和之間的線性關(guān)系,甲、乙兩位同學(xué)各自獨(dú)立作了次和次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為、,已知兩人得的試驗(yàn)數(shù)據(jù)中,變量和的數(shù)據(jù)的平均值都相等,且分別都是、,那么下列說法正確的是( )
A. 直線和一定有公共點(diǎn) B. 必有直線
C. 直線和相交,但交點(diǎn)不一定是 D. 和必定重合
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G為線段AD上的任意一點(diǎn).
(1)若M是線段EF的中點(diǎn),證明:平面AMG⊥平面BDF;
(2)若N為線段EF上任意一點(diǎn),設(shè)直線AN與平面ABF,平面BDF所成角分別是α,β,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1) 時,證明: ;
(2)當(dāng) 時,直線 和曲線 切于點(diǎn) ,求實(shí)數(shù) 的值;
(3)當(dāng) 時,不等式 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,過對角線的一個平面交于點(diǎn),交于.
①四邊形一定是平行四邊形;
②四邊形有可能是正方形;
③四邊形在底面內(nèi)的投影一定是正方形;
④四邊形有可能垂直于平面.
以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了及時向群眾宣傳“十九大”黨和國家“鄉(xiāng)村振興”戰(zhàn)略,需要尋找一個宣講站,讓群眾能在最短的時間內(nèi)到宣講站.設(shè)有三個鄉(xiāng)鎮(zhèn),分別位于一個矩形的兩個頂點(diǎn)及的中點(diǎn)處,,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與等距離的一點(diǎn)處設(shè)一個宣講站,記點(diǎn)到三個鄉(xiāng)鎮(zhèn)的距離之和為.
(Ⅰ)設(shè),將表示為的函數(shù);
(Ⅱ)試?yán)茫á瘢┑暮瘮?shù)關(guān)系式確定宣講站的位置,使宣講站到三個鄉(xiāng)鎮(zhèn)的距離之和最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時,直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的最大值及此時圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)行如下程序框圖,如果輸入的t∈[0,5],則輸出S屬于( )
A.[﹣4,10)
B.[﹣5,2]
C.[﹣4,3]
D.[﹣2,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 : ,右頂點(diǎn)為 ,離心率為 ,直線 : 與橢圓 相交于不同的兩點(diǎn) , ,過 的中點(diǎn) 作垂直于 的直線 ,設(shè) 與橢圓 相交于不同的兩點(diǎn) , ,且 的中點(diǎn)為 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)原點(diǎn) 到直線 的距離為 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對稱軸為坐標(biāo)軸,頂點(diǎn)是坐標(biāo)原點(diǎn),準(zhǔn)線方程為 ,直線 與拋物線相交于不同的 , 兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)如果直線 過拋物線的焦點(diǎn),求 的值;
(3)如果 ,直線 是否過一定點(diǎn),若過一定點(diǎn),求出該定點(diǎn);若不過一定點(diǎn),試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com