15.已知直線ax+y-1=0與圓x2+y2-2x-8y+13=0交于A,B兩點(diǎn).若|AB|=2$\sqrt{3}$,則實(shí)數(shù)a的值是( 。
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

分析 圓方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑r,利用點(diǎn)到直線的距離公式表示出圓心到已知直線的距離d,根據(jù)弦長(zhǎng),利用垂徑定理及勾股定理列出關(guān)于a的方程,求出方程的解即可得到a的值.

解答 解:圓方程化為(x-1)2+(y-4)2=4,可得圓心(1,4),半徑r=2,
∵弦長(zhǎng)|AB|=2$\sqrt{3}$,圓心到直線的距離d=$\sqrt{4-3}$=$\frac{|a+3|}{\sqrt{{a}^{2}+1}}$,
解得:a=-$\frac{4}{3}$,
故選A.

點(diǎn)評(píng) 此題考查了直線與圓相交的性質(zhì),涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,垂徑定理,勾股定理,熟練掌握公式及定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△OMN中,點(diǎn)A在OM上,點(diǎn)B在ON上,且AB∥MN,2OA=OM,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則終點(diǎn)P落在四邊形ABNM內(nèi)(含邊界)時(shí),$\frac{y+x+2}{x+1}$的取值范圍是( 。
A.$[\frac{1}{2},2]$B.$[\frac{1}{3},3]$C.$[\frac{3}{2},3]$D.$[\frac{4}{3},4]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是邊SB的中點(diǎn).
(1)求證:CE∥平面SAD;
(2)求二面角D-EC-B的余弦值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖程序,若輸出的結(jié)果是4,則輸入的x的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了研究某學(xué)科成績(jī)是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高二年級(jí)抽取了30名男生和20名女生的該學(xué)科成績(jī),得到如圖所示男生成績(jī)的頻率分布直方圖和女生成績(jī)的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).

(Ⅰ)(i)請(qǐng)根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)分非優(yōu)分總計(jì)
男生
女生
總計(jì)50
(ii)據(jù)列聯(lián)表判斷,能否在犯錯(cuò)誤概率不超過10%的前提下認(rèn)為“學(xué)科成績(jī)與性別有關(guān)”?
(Ⅱ)將頻率視作概率,從高二年級(jí)該學(xué)科成績(jī)中任意抽取3名學(xué)生的成績(jī),求成績(jī)?yōu)閮?yōu)分人數(shù)X的分布列與數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,0,-1),$\overrightarrow$=(-1,-1,0),則|$\overrightarrow{a}$|的值是$\sqrt{2}$,向量$\overrightarrow{a}$與$\overrightarrow$之間的夾角是120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.tan$\frac{π}{4}$等于(  )
A.-1B.1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=4sinxcos({x+\frac{π}{3}})+4\sqrt{3}{sin^2}x-\sqrt{3}$.
(Ⅰ)求$f({\frac{π}{3}})$的值;
(Ⅱ)求f(x)圖象的對(duì)稱軸方程;
(Ⅲ)求f(x)在$[{-\frac{π}{4}\;,\;\frac{π}{3}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若f(x)=ax2+(a-2)x+a2是偶函數(shù),則${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{28}{3}$+2π.

查看答案和解析>>

同步練習(xí)冊(cè)答案