分析 設(shè)f(x)=ax2+bx+c,由f(x)>-x,可得ax2+(b+1)x+c>0,由f(x)>-x的解集為{x|1<x<2},列出不等式組,求解即可得a,b,c的關(guān)系式,再由f(x)+2a=0求出a的值,結(jié)合a,b,c的關(guān)系式即可得答案.
解答 解:設(shè)f(x)=ax2+bx+c,由f(x)>-x,可得ax2+(b+1)x+c>0,
∵f(x)>-x的解集為{x|1<x<2},
∴$\left\{\begin{array}{l}{a<0}\\{-\frac{b+1}{a}=1+2}\\{\frac{c}{a}=1×2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a<0①}\\{b=-3a-1②}\\{c=2a③}\end{array}\right.$,
∴f(x)=ax2-(3a+1)x+2a.
∵f(x)+2a=0,即ax2-(3a+1)x+4a=0有兩相等實(shí)根,
∴△=(3a+1)2-16a2=0,解得a=1舍去或$a=-\frac{1}{7}$.④
由①②③④得:$a=-\frac{1}{7}$,$b=-\frac{4}{7}$,$c=-\frac{2}{7}$.
∴$f(x)=-\frac{1}{7}{x^2}-\frac{4}{7}x-\frac{2}{7}$.
點(diǎn)評(píng) 本題考查了函數(shù)的定義域及其求法,考查了二次函數(shù)的性質(zhì),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 0 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | $\frac{32}{3}π$ | C. | $\frac{16}{3}π$ | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{1}{4}$ | C. | -4 | D. | $-\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com