已知數(shù)集具有性質(zhì);對(duì)任意的
兩數(shù)中至少有一個(gè)屬于。
(Ⅰ)分別判斷數(shù)集是否具有性質(zhì),并說明理由;
(Ⅱ)證明:,且;
(Ⅲ)證明:當(dāng)時(shí),成等比數(shù)列。
(Ⅰ)由于均不屬于數(shù)集,∴該數(shù)集不具有性質(zhì)P;由于都屬于數(shù)集,∴該數(shù)集具有性質(zhì)P
(Ⅱ)證明見解析。
(Ⅲ)證明見解析。
本題主要考查集合、等比數(shù)列的性質(zhì),考查運(yùn)算能力、推理論證能力、分
分類討論等數(shù)學(xué)思想方法。本題是數(shù)列與不等式的綜合題,屬于較難層次題。
(Ⅰ)由于均不屬于數(shù)集,∴該數(shù)集不具有性質(zhì)P;由于都屬于數(shù)集,∴該數(shù)集具有性質(zhì)P。
(Ⅱ)∵具有性質(zhì)P,∴中至少有一個(gè)屬于A,
由于,∴,故。
從而,∴。
, ∴,故。
A具有性質(zhì)P可知。
又∵
,
從而,
。
(Ⅲ)由(Ⅱ)知,當(dāng)時(shí),有,即
,∴,∴,
A具有性質(zhì)P可知。
,得,且,∴,
,即是首項(xiàng)為1,公比為成等比數(shù)列。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)fx)=x2-4,設(shè)曲線yfx)在點(diǎn)(xn,fxn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n),其中為正實(shí)數(shù).  
(Ⅰ)用表示xn+1;
(Ⅱ)若a1=4,記an=lg,證明數(shù)列{}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)若x1=4,bnxn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的前n項(xiàng)和,.
(1)當(dāng)取得最大值時(shí),求;(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)已知數(shù)列是等差數(shù)列,公差為2,1,=11,n+1n+bn
(Ⅰ)若的值;  (Ⅱ)在(Ⅰ)條件下,求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等比數(shù)列的首項(xiàng),前n項(xiàng)和為,且成等差數(shù)列.
(Ⅰ)求的公比;
(Ⅱ)用表示的前項(xiàng)之積,即,試比較、、的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在數(shù)列中,).
(I)若q =2,d = -1,,求a3,a4,并猜測a2006;
(II)若是等比數(shù)列,且是等差數(shù)列,求q, d滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列中,是其前項(xiàng)和, 的值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(Ⅰ)求的值;
(Ⅱ)記,是否存在一個(gè)實(shí)數(shù),使數(shù)列為等差數(shù)列?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說明理由;
(Ⅲ)求數(shù)列{}的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列的公差為2,前項(xiàng)和為,則下列結(jié)論中正確的是     ( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案