18.已知集合U=R,A={x|-4≤x≤2},B={x|-1<x≤3},則A∩B=( 。
A.{x|-4≤x≤2或-1<x≤3}B.{x|-1<x≤2}C.{x|-1≤x≤2}D.

分析 直接由交集的運(yùn)算性質(zhì)得答案.

解答 解:集合U=R,A={x|-4≤x≤2},B={x|-1<x≤3},則A∩B={x|-1<x≤2},
故選:B.

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,M為DD1的中點(diǎn),P為棱A1B1的中點(diǎn),則異面直線OP與MA所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)y=f(x)是函數(shù)y=logax(a>0,a≠1)的反函數(shù),若f(x)的圖象過點(diǎn)$(2,\frac{1}{4})$,則log2f(-1)的值為( 。
A.1B.2C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線x2-4y2=1的離心率為( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)于?x∈R,都有f(-x)=f(x)成立.
(1)若x≥0時(shí),f(x)=(${\frac{1}{2}}$)x,求不等式f(x)>$\frac{1}{4}$的解集;
(2)若f(x+1)是偶函數(shù),且當(dāng)x∈[0,1]時(shí),f(x)=2x,求f(x)在區(qū)間[2015,2016]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的離心率$\frac{{\sqrt{5}}}{5}$,左焦點(diǎn)在直線2x-y+2=0上.
(1)求橢圓方程;
(2)若AB是過橢圓的一個(gè)焦點(diǎn)F的弦,AB的傾斜角為$\frac{π}{4}$,求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=aln(x+1)-x2在(0,2)內(nèi)任取兩個(gè)實(shí)數(shù)m,n,且m≠n,不等式$\frac{f(m+1)-f(n+1)}{m-n}$>1恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[6,+∞)B.[15,28]C.[15,+∞)D.[28,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+y2-4x-2y-20=0及直線l:mx-y-m+3=0(m∈R).
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C總相交;
(2)求直線l被圓C截得的弦長(zhǎng)的最小值及此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.有4對(duì)夫妻進(jìn)行一種游戲,每個(gè)女士送一件禮物給某個(gè)男士,規(guī)定任何士都不能收自己妻子的禮物,且每個(gè)男士只能收一件禮物.則不同的送禮方式共有( 。┓N.
A.10B.24C.9D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案