給出如下四個(gè)命題:
①若a≥0,b≥0,則數(shù)學(xué)公式;
②若ab>0,則|a+b|<|a|+|b|;
③若a>0,b>0,a+b>4,ab>4,則a>2,b>2;
④若a,b,c,∈R,且ab+bc+ca=1,則(a+b+c)2≥3;
其中正確的命題有________.(填序號(hào))

①④
分析:對(duì)于①,由于a≥0,b≥0,利用基本不等式可得,a2+b2≥2ab,從而有2(a2+b2)≥a2+b2+2ab,故可判斷①;對(duì)于②,若ab>0,則|a+b|=|a|+|b|,結(jié)論不成立;對(duì)于③,列舉反例a=5,b=1;對(duì)于④,展開(kāi)再利用基本不等式即可判斷④正確
解答:對(duì)于①,∵a≥0,b≥0,∴a2+b2≥2ab,∴2(a2+b2)≥a2+b2+2ab,∴,故①正確;
對(duì)于②,若ab>0,則|a+b|=|a|+|b|,故②錯(cuò)誤;
對(duì)于③,a=5,b=1時(shí),a+b>4,ab>4,則a>2,b<2,故③錯(cuò)誤;
對(duì)于④,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥3(ab+bc+ac)
∵ab+bc+ca=1,∴(a+b+c)2≥3,故④正確
故答案為:①④
點(diǎn)評(píng):本題以命題為載體,考查不等式的性質(zhì),考查基本不等式的運(yùn)用,命題的正確性,需要嚴(yán)格的證明,命題不成立時(shí),列舉反例即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下四個(gè)命題
①對(duì)于任意的實(shí)數(shù)α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;
②存在實(shí)數(shù)α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;
③公式tan(α+β)=
tanα+tanβ
1-tanα•tanβ
成立的條件是α≠kπ+
π
2
(k∈Z)且β≠kπ+
π
2
(k∈Z);
④不存在無(wú)窮多個(gè)α和β,使sin(α-β)=sinαcosβ-cosαsinβ;
其中假命題是( 。
A、①②B、②③C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x|x|+bx+c(b,c∈R),給出如下四個(gè)命題:①若c=0,則f(x)為奇函數(shù);②若b=0,則函數(shù)f(x)在R上是增函數(shù);③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,c)成中心對(duì)稱(chēng)圖形;④關(guān)于x的方程f(x)=0最多有兩個(gè)實(shí)根.其中正確的命題
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)給出如下四個(gè)命題:
①過(guò)點(diǎn)A(4,1)且在兩坐標(biāo)軸上的截距相等的直線共有兩條;
②若平面α內(nèi)的兩條直線都與平面β平行,則α∥β;
③已知α∩β=l,若α內(nèi)的直線m垂直于l,則α⊥β;
④已知α⊥β,α∩β=l,若α內(nèi)的直線m與l不垂直,則m與β也不垂直.
請(qǐng)你寫(xiě)出其中所有真命題的序號(hào):
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類(lèi)似的,我們?cè)趶?fù)數(shù)集C上也可以定義一個(gè)稱(chēng)為“序”的關(guān)系,記為“>”.定義如下:對(duì)于任意兩個(gè)復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關(guān)系“>”,給出如下四個(gè)命題:
①1>i>0; 
②若z1>z2,z2>z3,則z1>z3
③若z1>z2,則,對(duì)于任意z∈C,z1+z>z2+z;
④對(duì)于復(fù)數(shù)z>0,若z1>z2,則zz1>zz2
其中真命題的序號(hào)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下四個(gè)命題:
①若a≥0,b≥0,則
2(a2+b2)
≥a+b
;
②若ab>0,則|a+b|<|a|+|b|;
③若a>0,b>0,a+b>4,ab>4,則a>2,b>2;
④若a,b,c,∈R,且ab+bc+ca=1,則(a+b+c)2≥3;
其中正確的命題是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案