【題目】某汽車生產(chǎn)廠家為了解某型號電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”,收集了使用該型號電動(dòng)汽車年以上的部分客戶的相關(guān)數(shù)據(jù),得到他們的電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”.從年齡在40歲以下的客戶中抽取10位歸為A組,從年齡在40歲(含40歲)以上的客戶中抽取10位歸為B組,將他們的電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”整理成下圖,其中“+”表示A組的客戶,“⊙”表示B組的客戶.
注:“實(shí)際平均續(xù)航里程數(shù)”是指電動(dòng)汽車的行駛總里程與充電次數(shù)的比值.
(Ⅰ)記A,B兩組客戶的電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”的平均值分別為,,根據(jù)圖中數(shù)據(jù),試比較,的大小(結(jié)論不要求證明);
(Ⅱ)從A,B兩組客戶中隨機(jī)抽取2位,求其中至少有一位是A組的客戶的概率;
(III)如果客戶的電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”不小于350,那么稱該客戶為“駕駛達(dá)人”.從A,B兩組客戶中,各隨機(jī)抽取1位,記“駕駛達(dá)人”的人數(shù)為,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
【答案】(Ⅰ)(Ⅱ)(III)見解析.
【解析】
(Ⅰ);(Ⅱ)設(shè)“從抽取的20位客戶中任意抽取2位,至少有一位是A組的客戶”為事件M,利用古典概型及排列組合能求出從抽取的20位客戶中任意抽取2位至少有一位是A組的客戶的概率;(III)依題意ξ的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
(Ⅰ).
(Ⅱ)設(shè)“從抽取的位客戶中任意抽取位,至少有一位是A組的客戶”為事件M,則
.
所以從抽取的位客戶中任意抽取位至少有一位是A組的客戶的概率是.
(III)依題意的可能取值為,,.
則; ;
.
所以隨機(jī)變量的分布列為:
| |||
所以隨機(jī)變量的數(shù)學(xué)期望.即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某學(xué)校的特長班有50名學(xué)生,其中有體育生20名,藝術(shù)生30名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示.因?yàn)閷W(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若前兩組的學(xué)生中體育生有8名.
(1)根據(jù)頻率分布直方圖及題設(shè)數(shù)據(jù)完成下列2×2列聯(lián)表.
心率小于60次/分 | 心率不小于60次/分 | 合計(jì) | |
體育生 | 20 | ||
藝術(shù)生 | 30 | ||
合計(jì)50 |
(2)根據(jù)(1)中表格數(shù)據(jù)計(jì)算可知,________(填“有”或“沒有”)99.5%的把握認(rèn)為“心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)”.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,離心率為,過的直線與橢圓交于,兩點(diǎn),且的周長為8.
(1)求橢圓的方程;
(2)若直線與橢圓分別交于,兩點(diǎn),且,試問點(diǎn)到直線的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng) 時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)求函數(shù) 的單調(diào)區(qū)間和極值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).
(1)根據(jù)數(shù)據(jù)可知與具有線性相關(guān)關(guān)系,請建立關(guān)于的回歸方程(系數(shù)精確到);
(2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷量, ,則每位員工每日獎(jiǎng)勵(lì)100元; ,則每位員工每日獎(jiǎng)勵(lì)150元; ,則每位員工每日獎(jiǎng)勵(lì)200元.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元.(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位)
參考數(shù)據(jù): , ,其中, 分別為第個(gè)月的促銷費(fèi)用和產(chǎn)品銷量, .
參考公式:
(1)對于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計(jì)分別為, .
(2)若隨機(jī)變量服從正態(tài)分布,則, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著改革開放的不斷深入,祖國不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,2019年1月1日起我國實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等.其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 | 四級 | |
每月應(yīng)納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元至25000元的部分 | 超過25000元至35000元的部分 | |
稅率 | 3 | 10 | 20 | 25 |
(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項(xiàng)附加扣除.請問李某月應(yīng)繳納的個(gè)稅金額為多少?
(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個(gè)孩子的有400人,沒有孩子的有100人,有一個(gè)孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)附加扣除(受統(tǒng)計(jì)的500人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為20000元,依據(jù)樣本估計(jì)總體的思想,試估計(jì)在新個(gè)稅政策下這類人群繳納個(gè)稅金額的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,直線經(jīng)過點(diǎn)且傾斜角為.
求圓的直角坐標(biāo)方程和直線的參數(shù)方程;
已知直線與圓交與,,滿足為的中點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點(diǎn),且.
(1)求證:平面平面ABC;
(2)求二面角D-CE-F的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com