設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,S6=4S3,則a10=
 
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:確定q=1,不滿足S6=4S3,進(jìn)而利用等比數(shù)列的前n項(xiàng)和公式,可得q3=-4,即可求出a10
解答: 解:設(shè)等比數(shù)列{an}的公比為q,
顯然q=1,不滿足S6=4S3,
故可得
1-q6
1-q
=4×
1-q3
1-q
,
解之可得q3=-4,
∴a10=1×(-4)3=-64.
故答案為:-64.
點(diǎn)評(píng):本題考查等比數(shù)列的前n項(xiàng)和公式,涉及等比數(shù)列的判定,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某技術(shù)部門對(duì)工程師進(jìn)行達(dá)標(biāo)定級(jí)考核,需要經(jīng)過兩輪測(cè)試,每輪測(cè)試的成績(jī)?cè)?.5分及以上的定位該輪測(cè)試通過,只有通過第一輪測(cè)試的人員才能進(jìn)行第二輪測(cè)試,兩輪測(cè)試的過程相互獨(dú)立,并規(guī)定
①兩輪測(cè)試均通過的一定為一級(jí)工程師;
②僅通過第一輪測(cè)試,而第二輪測(cè)試沒通過的定為二級(jí)工程師;
③第一輪測(cè)試沒通過的不予定級(jí).
已知甲、乙、丙三位工程師通過第一輪測(cè)試的概率分別為
1
3
2
3
,
2
3
;通過第二輪測(cè)試的概率均為
1
2

(1)求經(jīng)過本次考核,甲被定位以及工程師,乙被定位二級(jí)工程師的概率;
(2)求經(jīng)過本次考核,甲、乙、丙三位工程師中恰有兩位被定位以及工程師的概率;
(3)設(shè)甲、乙、丙三位工程師中被定位一級(jí)工程師的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在圓C:x2+y2-2x-2y-7=0上總有四個(gè)點(diǎn)到直線l:3x+4y+m=0的距離是1,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列程序框圖輸出的結(jié)果 x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(x+
1
x
5的展開式中含x3的項(xiàng)的系數(shù)是
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x||x-2|≤3,x∈R},B={y|y=1-x2,y∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在獨(dú)立性檢驗(yàn)中,根據(jù)二維條形圖回答,吸煙與患肺病
 
(填“有”或“沒有”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U是實(shí)數(shù)集R,M={x|x2>1},N={x|0<x<2},則集合N∩∁UM=(  )
A、{x|1<x<2}
B、{x|0<x≤1}
C、{x|0≤x≤1}
D、{x|0<x<1}

查看答案和解析>>

同步練習(xí)冊(cè)答案