已知A(1,2),B(3,4),C(-2,2),D(-3,5),則向量
AB
在向量
CD
上的投影為
 
分析:先求得向量的坐標(biāo),再求得其數(shù)量積和模,然后用投影公式求解.
解答:解:根據(jù)題意:
AB
=(2,2),
CD
=(-1,3)

AB
•CD
=4
,|
CD
|=
10
,
|
AB
|cosα=
AB
•CD
|
CD
|
=
2
10
5
,
故答案為:
2
10
5
點(diǎn)評(píng):本題主要考查向量投影的定義,要求熟練應(yīng)用公式.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知A(1,-2),B(3,0)則線段AB中點(diǎn)的坐標(biāo)為
(2,-1)
(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,2)、B(4,a),且直線AB的傾斜角為135°,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 
a
=(1,2),
b
=(2,x),若
a
b
,則x=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角形ABC中,已知A(-1,2),B(3,4),C(-2,5),則BC邊上的高AH所在的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,2),
b
=(x,1),分別求x的值使
①(2
a
+
b
)⊥(
a
-2
b
); 
②(2
a
+
b
)∥(
a
-2
b
); 
a
與 
b
的夾角是60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案