是奇函數(shù),且在區(qū)間上是單調(diào)增函數(shù),又,則的解集為                .

試題分析:根據(jù)題意,由于是奇函數(shù),則f(-x)=-f(x),且在區(qū)間上是單調(diào)增函數(shù),那么在x>0上遞增 ,又,f(-2)=0,那么通過函數(shù)圖像以及性質(zhì)可知,當(dāng)x>0時,f(x)>0,0<x<2;當(dāng)x>0時,則f(x)<0,則可知-2<x<0,綜上可知滿足不等式的解集為
點評:主要是考查了函數(shù)性質(zhì)的運用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)實數(shù)均不小于1,且,則的最小值是   .(是指四個數(shù)中最大的一個)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù),若關(guān)于的方程有三個不同實根,則的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的遞增區(qū)間是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=若f(2-a2)>f(a),則實數(shù)a的取值范圍是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)試問該函數(shù)能否在處取到極值?若有可能,求實數(shù)的值;否則說明理由;
(2)若該函數(shù)在區(qū)間上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx,g(x)=k·.
(I)求函數(shù)F(x)= f(x)- g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時,函數(shù)f(x)> g(x)恒成立,求實數(shù)k的取值范圍;
(Ⅲ)設(shè)正實數(shù)a1a2,a3,,an滿足a1+a2+a3++an=1,
求證:ln(1+)+ln(1+)++ln(1+)>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形紙板ABCD的頂點AB分別在正方形邊框EOFG的邊OE、OF上,當(dāng)點BOF邊上進行左右運動時,點A隨之在OE上進行上下運動.若AB=8,BC=3,運動過程中,則點D到點O距離的最大值為
A.B.9C.D.

查看答案和解析>>

同步練習(xí)冊答案