若函數(shù)f(x)=sinax+
3
cosax(a>0)的最小正周期為1,則它的圖象的一個對稱中心為(  )
分析:利用兩角和的正弦函數(shù)化簡函數(shù)的表達式,利用周期求出a,然后求解函數(shù)的對稱中心.
解答:解:因為函數(shù)f(x)=sinax+
3
cosax=2sin(ax+
π
3
),因為函數(shù)的周期是1,
所以
a
=1
,所以a=2π,函數(shù)為f(x)=2sin(2πx+
π
3
),
令2πx+
π
3
=kπ,k∈Z,所以x=
k
2
-
1
6
,k∈Z,當k=1時,x=
1
3
,是函數(shù)的一個對稱中心是(
1
3
,0)
故選C.
點評:本題考查三角函數(shù)的化簡求值,正弦函數(shù)的對稱性以及函數(shù)的周期的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,設函數(shù)f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)若函數(shù)f(x)在x=
π
3
處取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•眉山一模)設函數(shù)f(x)對其定義域內的任意實數(shù)x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號是
①③④
①③④
(寫出所有你認為正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:寧波二模 題型:解答題

在△ABC中,角A,B,C所對的邊分別為a,b,c,設函數(shù)f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)若函數(shù)f(x)在x=
π
3
處取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省眉山市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

設函數(shù)f(x)對其定義域內的任意實數(shù),則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內任意x1、x2、x3,…,xn都有(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
其中,正確命題的序號是    (寫出所有你認為正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:四川省模擬題 題型:填空題

設函數(shù)f(x)對其定義域內的任意實數(shù)x1與x2都有,則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內任意x1、x2、x3,…,xn都有(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且,則;
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
其中,正確命題的序號是(     )(寫出所有你認為正確命題的序號).

查看答案和解析>>

同步練習冊答案