【題目】對于數(shù)列{an},定義Hn= 為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值”Hn=2n+1 , 記數(shù)列{an﹣kn}的前n項(xiàng)和為Sn , 若Sn≤S5對任意的n(n∈N*)恒成立,則實(shí)數(shù)k的取值范圍為

【答案】 ≤k≤
【解析】解:由題意,

Hn= =2n+1,

則a1+2a2+…+2n1an=n2n+1,a1+2a2+…+2n2an1=(n﹣1)2n,則2n1an=n2n+1﹣(n﹣1)2n=(n+1)2n,

則an=2(n+1),

對a1也成立,

故an=2(n+1),

則an﹣kn=(2﹣k)n+2,

則數(shù)列{an﹣kn}為等差數(shù)列,

故Sn≤S5對任意的n(n∈N*)恒成立可化為

a5≥0,a6≤0;

解得, ≤k≤

所以答案是: ≤k≤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0);命題q:實(shí)數(shù)x滿足
(1)若a=1,且“p且q”為真,求實(shí)數(shù)x的取值范圍
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如何把一條長為m的繩子截成3段,各圍成一個(gè)正方形,使這3個(gè)正方形的面積和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MCN是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為4 平方千米的三角形主題游戲樂園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(1)設(shè)AC=x,AB=y,用x表示y,并求y的最小值;
(2)設(shè)∠ACD=θ(θ為銳角),當(dāng)AB最小時(shí),用θ表示區(qū)域CDE的面積S,并求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量a=(4cos α , sin α),b=(sin β , 4cos β),若tan αtan β=16,求證:a//b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=
(1)證明:數(shù)列{a2n }是等比數(shù)列;
(2)求a2n及a2n1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C=
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x+2)2+y2=5,直線l:mx﹣y+1+2m=0,m∈R.
(1)求證:對m∈R,直線l與圓C總有兩個(gè)不同的交點(diǎn)A、B;
(2)求弦AB的中點(diǎn)M的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實(shí)數(shù)m,使得圓C上有四點(diǎn)到直線l的距離為 ?若存在,求出m的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】游樂場推出了一項(xiàng)趣味活動,參加活動者需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時(shí),記錄指針?biāo)竻^(qū)域中的數(shù),設(shè)兩次記錄的數(shù)分別為x,y,獎(jiǎng)勵(lì)規(guī)則如下:
①若xy≤3,則獎(jiǎng)勵(lì)玩具一個(gè);②若xy≥8,則獎(jiǎng)勵(lì)水杯一個(gè);③其余情況獎(jiǎng)勵(lì)飲料一瓶,假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻,小亮準(zhǔn)備參加此項(xiàng)活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案