13.已知函數(shù)f(x)=(x+a)ex,其中a∈R
(1)若曲線y=f(x)在點A(0,a)處的切線與直線y=|2a-1|x平行,求l的方程;
(2)若?a∈[1,2],函數(shù)f(x)在(b-ea,2)上為增函數(shù),求證:e2-3≤b<ea+2.

分析 (1)求出原函數(shù)的導(dǎo)函數(shù),利用斜率關(guān)系求出a的值,求得A的坐標,代入直線方程點斜式得l的方程;
(2)由f(x)在(b-ea,2)上為增函數(shù),得到b≥ea-a-1且b<ea+2,令g(a)=ea-a-1,再由導(dǎo)數(shù)證明g(a)的最小值為e2-3得答案.

解答 解:(1)f′(x)=ex+(x+a)ex=(x+a+1)ex,
則在A(0,a)處的切線的斜率為:f′(0)=a+1,
∵切線與直線平行,故a+1=|2a-1|,解得:a=0或a=2,
若a=0,則A(0,0),f′(0)=1,
∴切線方程是:y-0=1×(x-0),即y=x;
若a=2,則A(0,2),f′(0)=3,
∴切線方程是:y-2=2×(x-0),
即y=2x+2;
(2)證明:當?a∈[1,2]時,函數(shù)f(x)在(b-ea,2)為增函數(shù),
則在此范圍內(nèi),f′(x)=(x+a+1)ex≥0恒成立,
∵ex>0,則x+a+1≥0,
∵a∈[1,2],∴b-ea+a+1≥0且b-ea<2,
故b≥ea-a-1且b<ea+2,
令g(a)=ea-a-1,則g′(a)=ea-1,
當a∈[1,2]時,g′(a)>0,
∴g(a)在[1,2]遞增,
∴g(a)max=g(2)=e2-2-1=e2-3,
∴若要b≥ea-a-1在[1,2]內(nèi)恒成立,
只需b≥e2-3即可,
綜上:e2-3≤b<ea+2.

點評 本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查數(shù)學轉(zhuǎn)化思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.△ABC的內(nèi)角A、B、C的對邊分別是a,b,c,且asinA-csinC=(a-b)sinB,c=3.則△ABC面積的最大值為( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{9\sqrt{3}}{8}$D.$\frac{9\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知直線l和橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{16}$=1交于A、B兩點,點P(0,-1)且$\overrightarrow{AP}$•$\overrightarrow{BP}$=0,則$\overrightarrow{PA}$•$\overrightarrow{BA}$的最小值為$\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.時鐘的時針走過了30分鐘,則分針轉(zhuǎn)過的角為-180°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知$|\overrightarrow a|=3$,與$\overrightarrow a$共線的單位向量為±$\frac{\overrightarrow{a}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若f(x)=ex+ae-x為奇函數(shù),則滿足不等式$f({x-1})<\frac{{{e^2}-1}}{e}$的x的取值范圍為{x|x<2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在等比數(shù)列{an}中,若a5+a6+a7+a8=15,a6a7=-5,$\frac{1}{a_5}+\frac{1}{a_6}+\frac{1}{a_7}+\frac{1}{a_8}$=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.等差數(shù)列{an}中的a3,a2017分別是函數(shù)f(x)=x3-6x2+4x-1的兩個不同極值點,則${log_{\frac{1}{4}}}{a_{1010}}$為(  )
A.$\frac{1}{2}$B.2C.-2D.-$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案