精英家教網 > 高中數學 > 題目詳情
甲、乙二人各自選擇中午12時到下午1時隨機到達某地,他們約定:先到者等候15分鐘后再離開,則他們能夠會面的概率為
 
考點:幾何概型
專題:概率與統計
分析:本題是一個幾何概型,試驗包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},滿足條件的事件是A={(x,y)|0≤x≤1,0≤y≤1,|x-y|≤
1
4
},根據幾何概型概率公式可得.
解答: 解:記甲、乙二人到達的時刻分別為x,y,
試驗包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1}
事件對應的集合表示的面積(圖中正方形)是S=1,
滿足條件的事件是A={(x,y)|0≤x≤1,0≤y≤1,|x-y|≤
1
4
},
事件對應的集合表示的面積(圖中陰影)是1-2×
1
2
×
3
4
×
3
4
=
7
16

根據幾何概型概率公式得到P=
7
16

故答案為:
7
16

點評:本題考查幾何概型,作圖是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
4-x2
x+4
-m有零點,則m的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,若acosA=bcosB,則此三角形是
 
(填“等腰三角形”、“正三角形”、“等腰直角三角形”、“直角三角形”、“等腰或直角三角形”中的一個)

查看答案和解析>>

科目:高中數學 來源: 題型:

要挖一個面積為432m2的矩形魚池,周圍兩側分別留出寬分別為3m,4m的堤堰,要想使占地總面積最小,此時魚池的周長為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

從3張100元,2張200元的上海世博會門票中任取2張,則所取2張門票價格相同的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中
 
為真命題.(填序號)
①“若x2+y2=0,則x,y全為0”的否命題;
②“A∩B=A”成立的必要條件是“A?B”;
③“全等三角形是相似三角形”的逆命題; 
④“圓內接四邊形對角互補”的逆否命題.

查看答案和解析>>

科目:高中數學 來源: 題型:

為了測算如圖的陰影部分的面積,作一個邊長為8的正方形將其包含在內,并向正方形內隨機投擲800個黃豆,已知恰有300個落在陰影部分.據此,可估計陰影部分的面積為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

方程5x-1•103x=8x的解集是(  )
A、{1,4}
B、{
1
4
}
C、{1,
1
4
}
D、{4,
1
4
}

查看答案和解析>>

科目:高中數學 來源: 題型:

下面程序運行時,從鍵盤輸入4,則輸出結果為(  )
A、4B、8C、15D、2

查看答案和解析>>

同步練習冊答案